Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Candidate Drug Stops Cancer Cells, Regenerates Nerve Cells

Published: Friday, June 22, 2012
Last Updated: Friday, June 22, 2012
Bookmark and Share
Scientists have developed a small-molecule-inhibiting drug that in early laboratory cell tests stopped breast cancer cells from spreading and also promoted the growth of early nerve cells called neurites.

Researchers from Cincinnati Children’s Hospital Medical Center report their findings online June 21 in Chemistry & Biology. The scientists named their lead drug candidate “Rhosin” and hope future testing shows it to be promising for the treatment of various cancers or nervous system damage.

The inhibitor overcomes a number of previous scientific challenges by precisely targeting a single component of a cell signaling protein complex called Rho GTPases. This complex regulates cell movement and growth throughout the body. Miscues in Rho GTPase processes are also widely implicated in human diseases, including various cancers and neurologic disorders.

“Although still years from clinical development, in principle Rhosin could be useful in therapy for many kinds of cancer or possibly neuron and spinal cord regeneration,” said Yi Zheng, PhD, lead investigator and director of Experimental Hematology and Cancer Biology at Cincinnati Children’s. “We’ve performed in silica (computerized) rational drug design, pharmacological characterization and cell tests in the laboratory, and we are now starting to work with mouse models.”
 
Because the role of Rho GTPases in cellular processes and cancer formation is well established, researchers have spent years trying to identify safe and effective therapeutic targets for specific parts of the protein complex. In particular, scientists have focused on the center protein in the complex called RhoA, which is essential for the signaling function of the complex. In breast cancer for example, increased RhoA activity makes the cancer cells more invasive and causes them to spread, while a deficiency of RhoA suppresses cancer growth and progression.

Despite this knowledge, past efforts to develop an effective small-molecule inhibitor for RhoA have failed, explained Zheng, who has studied Rho GTPases for over two decades. Most roadblocks stem from a lack of specificity in how researchers have been able to target RhoA, a resulting lack of efficiency in affecting molecular processes, problems with toxicity, and the inability to find a workable drug design.

For the current study, Zheng and his colleagues started with the extensive body of research from Cincinnati Children’s and other institutions describing the processes and functions of Rho GTPases. They then used high-throughput computerized molecular screening and computerized drug design to reveal a druggable target site. This also provided a preliminary virtual simulation on the potential effectiveness of candidate drugs.

A key challenge to binding a small-molecule inhibitor to RhoA is the protein’s globular structure and lack of surface pocket areas suitable for easy binding, Zheng said. The unique chemical structure of the lead compound identified by researchers, Rhosin, allows it to effectively bind to two shallow surface grooves on RhoA. This enables the candidate drug to take root and begin affecting cells. The two-legged configuration of Rosin also describes a useful drug design strategy for more effectively targeting difficult molecular sites like RhoA.

The researchers also wanted to make sure Rhosin effectively blocked what are known as guanine nucleotide exchange factors (GEFs). Guanine nucleotide is a critical energy source and signaling component of cells. Activation of GEFs is required to set off the regulatory signaling of GTPases (GTP stands for guanosine triphosphate).

After conducting a series of laboratory cell tests to verify the targeting and binding capabilities of Rhosin to RhoA, the researchers then tested the candidate drug’s impact on cultured breast cancer cells and nerve cells.

In tests on a human breast cancer cells, Rhosin inhibited cell growth and the formation of mammary spheres in a dose dependent manner, acting specifically on RhoA molecular targets without disrupting other critical cellular processes. Rhosin does not affect non-cancerous breast cells. This, along with other tests the scientists performed, indicated Rhosin’s effectiveness in targeting RhoA-mediated breast cancer proliferation, according to the researchers.

Researchers also treated an extensively tested line of neuronal cells with Rhosin, along with nerve growth factor, a protein that is important to the growth and survival of neurons. Rhosin worked with nerve growth factor in a dose-dependent way to promote the proliferation of branching neurites from the neuronal cells. Neurites are young or early stage extensions from neurons required for neuronal communications.

Funding for the study came from National Institutes of Health.

Also collaborating on the study were NanoTemper Technologies in Munich, Germany and the Drug Discovery Center at the University of Cincinnati.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Monday, August 17, 2015
Lab-developed Intestinal Organoids form Mature Human Tissue in Mice
Study produces unprecedented model to study intestinal diseases.
Tuesday, October 21, 2014
Scientific News
NIH Study Finds Calorie Restriction Lowers Some Risk Factors for Age-Related Diseases
Two-year trial did not produce expected metabolic changes, but influenced other life span markers.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!