Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

University of Birmingham Invests £2 Million in Environmental Genomics Program

Published: Thursday, July 19, 2012
Last Updated: Thursday, July 26, 2012
Bookmark and Share
The research initiative aims to build genomics and bioinformatics expertise for the emerging field of environmental genomics.

Environmental genomics uses high-throughput DNA technologies and the analysis of high-dimensional data to link gene functions and interactions to the fate of natural populations coping with environmental challenges, including global climate change. This new research initiative builds upon the School’s expertise in cellular, genetic and metabolomic toxicology to understand how organisms respond to environmental stress, particularly from pollution.

There are currently over 80,000 chemicals used by manufacturers of consumer goods that are released into the environment, yet only around 7% have ever been tested for their potential health effects to humans and ecosystems, even in rudimentary ways. As more products are introduced to markets every year, there is now great demand by regulatory authorities and industries for new technologies to quickly, cheaply and effectively measure the possible toxicities of these chemicals.

‘Government agencies on both sides of the Atlantic agree that high-throughput genomics are expected to be the basis for environmental and human health protection and remediation by 2015, thus creating a global demand for these skills and technologies’, said Professor Malcolm Press, Pro-Vice-Chancellor and Head of the College of Life and Environmental Sciences at the University of Birmingham.

To jump-start this effort, the University is investing in positions to appoint, post-doctoral fellowships, technicians, doctoral student training and by building impressive genomics, metabolomics, computing and laboratory facilities. The initiative is under the direction of Professor John Colbourne, who has been recruited from Indiana University, Bloomington, USA. Colbourne was genomics director of the Center for Genomics and Bioinformatics, the lead institution to describe the genome sequence of a tiny crustacean called Daphnia. For many decades, Daphnia serves as the primary aquatic invertebrate test-organism by environmental protection agencies around the world. Because of Colbourne’s work in conjunction with the Daphnia Genomics Consortium (DGC), the US National Institutes of Health now includes this species within its selective list of model organisms for biomedical research, yet here with special emphasis on understanding how genes and environments interact to determine disease susceptibility.

Daphnia measures 3-6 mm, is particularly sensitive to chemicals, is a keystone species of freshwater food chains, has a remarkable range of adaptive responses to ecological conditions, and shares the most number of genes with humans from among the other invertebrate model species.

‘I am excited by this opportunity to help assemble a unique research group that studies genomics to improve the environment. This investment will help catalyze international cooperation and provide a training ground for early career scientists in the field’, said Colbourne. ‘The University of Birmingham is a natural home for this type of multidisciplinary research,’ he adds. The UK represents half of the European laboratories participating in the DGC, which is open to researchers from around the world wanting to collaborate by sharing resources and expertise.

While at Indiana University, Colbourne has forged strong ties with corporations that share the vision of modernizing environmental risk assessment. These industry-academic collaborations are also providing training on the uses of technologies for the field, including at an annual Environmental Genomics summer course at the Mount Desert Island Biological Laboratory, in Maine, where Colbourne holds an adjunct teaching position.

‘Imagine a new cohort of trained scientists working in academia, government or for industry who can reliably forecast potential environmental problems from the biochemical responses of selected animals to stress, long before actual harm is realized’, asks Mark Viant, Professor of Metabolomics at the University of Birmingham and member of the DGC. ‘This technology can be a key to help industries manufacture greener products and better manage their environmental and investment risks.’

The plan for financing the initiative’s growth is to leverage this University’s initial investment with government research grants and contributions from industry, private foundations and donors.

‘The economic rewards from the expanding applications of science that is born of basic genomics research are obvious,’ said Colbourne, ‘yet the infrastructure and jobs needed to support a large-scale genomics testing and bioinformatics research facility will require investors from all sectors, who are concerned by the increasing demands that humans place on essential ecosystem services, including our need for clean water.’


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

BGI, University of Birmingham Create UK Environmental Omics Centre
The Centre will seek to protect environment, health and global biodiversity by analysing the toxicity of compounds more efficiently than has been achieved before.
Tuesday, July 08, 2014
New, Effective Way to Diagnose Latent TB
A study co-authored by the University of Birmingham has identified the most effective way to test people with latent tuberculosis (TB), a potentially fatal infection that has increased in the UK in recent years.
Thursday, May 15, 2014
A Cluster of Twenty Atoms of Gold is Visualized for the First Time by Physicists
Birmingham physicists reveal the atomic arrangement by imaging the cluster with an electron microscope.
Friday, July 27, 2012
Scientists Discover way to fix Drugs with DNA
This is thought to be a crucial step forward for researchers who are developing drugs to combat cancer and other diseases.
Wednesday, February 08, 2006
Scientific News
Health Risks of Saturated Fats Aggravated by Immune Response
Research shows that the presence of saturated fats resulted in monocytes migrating into the tissues of vital organs.
Changing the Biological Data Visualisation World
Scientists at TGAC, alongside European partners, have created a cutting-edge, open source community for the life sciences.
NIH Study Finds Calorie Restriction Lowers Some Risk Factors for Age-Related Diseases
Two-year trial did not produce expected metabolic changes, but influenced other life span markers.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!