Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

University of Birmingham Invests £2 Million in Environmental Genomics Program

Published: Thursday, July 19, 2012
Last Updated: Thursday, July 26, 2012
Bookmark and Share
The research initiative aims to build genomics and bioinformatics expertise for the emerging field of environmental genomics.

Environmental genomics uses high-throughput DNA technologies and the analysis of high-dimensional data to link gene functions and interactions to the fate of natural populations coping with environmental challenges, including global climate change. This new research initiative builds upon the School’s expertise in cellular, genetic and metabolomic toxicology to understand how organisms respond to environmental stress, particularly from pollution.

There are currently over 80,000 chemicals used by manufacturers of consumer goods that are released into the environment, yet only around 7% have ever been tested for their potential health effects to humans and ecosystems, even in rudimentary ways. As more products are introduced to markets every year, there is now great demand by regulatory authorities and industries for new technologies to quickly, cheaply and effectively measure the possible toxicities of these chemicals.

‘Government agencies on both sides of the Atlantic agree that high-throughput genomics are expected to be the basis for environmental and human health protection and remediation by 2015, thus creating a global demand for these skills and technologies’, said Professor Malcolm Press, Pro-Vice-Chancellor and Head of the College of Life and Environmental Sciences at the University of Birmingham.

To jump-start this effort, the University is investing in positions to appoint, post-doctoral fellowships, technicians, doctoral student training and by building impressive genomics, metabolomics, computing and laboratory facilities. The initiative is under the direction of Professor John Colbourne, who has been recruited from Indiana University, Bloomington, USA. Colbourne was genomics director of the Center for Genomics and Bioinformatics, the lead institution to describe the genome sequence of a tiny crustacean called Daphnia. For many decades, Daphnia serves as the primary aquatic invertebrate test-organism by environmental protection agencies around the world. Because of Colbourne’s work in conjunction with the Daphnia Genomics Consortium (DGC), the US National Institutes of Health now includes this species within its selective list of model organisms for biomedical research, yet here with special emphasis on understanding how genes and environments interact to determine disease susceptibility.

Daphnia measures 3-6 mm, is particularly sensitive to chemicals, is a keystone species of freshwater food chains, has a remarkable range of adaptive responses to ecological conditions, and shares the most number of genes with humans from among the other invertebrate model species.

‘I am excited by this opportunity to help assemble a unique research group that studies genomics to improve the environment. This investment will help catalyze international cooperation and provide a training ground for early career scientists in the field’, said Colbourne. ‘The University of Birmingham is a natural home for this type of multidisciplinary research,’ he adds. The UK represents half of the European laboratories participating in the DGC, which is open to researchers from around the world wanting to collaborate by sharing resources and expertise.

While at Indiana University, Colbourne has forged strong ties with corporations that share the vision of modernizing environmental risk assessment. These industry-academic collaborations are also providing training on the uses of technologies for the field, including at an annual Environmental Genomics summer course at the Mount Desert Island Biological Laboratory, in Maine, where Colbourne holds an adjunct teaching position.

‘Imagine a new cohort of trained scientists working in academia, government or for industry who can reliably forecast potential environmental problems from the biochemical responses of selected animals to stress, long before actual harm is realized’, asks Mark Viant, Professor of Metabolomics at the University of Birmingham and member of the DGC. ‘This technology can be a key to help industries manufacture greener products and better manage their environmental and investment risks.’

The plan for financing the initiative’s growth is to leverage this University’s initial investment with government research grants and contributions from industry, private foundations and donors.

‘The economic rewards from the expanding applications of science that is born of basic genomics research are obvious,’ said Colbourne, ‘yet the infrastructure and jobs needed to support a large-scale genomics testing and bioinformatics research facility will require investors from all sectors, who are concerned by the increasing demands that humans place on essential ecosystem services, including our need for clean water.’

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Evidence of How Incurable Cancer Develops
Researchers in the West Midlands have made a breakthrough in explaining how an incurable type of blood cancer develops from an often symptomless prior blood disorder.
Tuesday, October 20, 2015
BGI, University of Birmingham Create UK Environmental Omics Centre
The Centre will seek to protect environment, health and global biodiversity by analysing the toxicity of compounds more efficiently than has been achieved before.
Tuesday, July 08, 2014
New, Effective Way to Diagnose Latent TB
A study co-authored by the University of Birmingham has identified the most effective way to test people with latent tuberculosis (TB), a potentially fatal infection that has increased in the UK in recent years.
Thursday, May 15, 2014
A Cluster of Twenty Atoms of Gold is Visualized for the First Time by Physicists
Birmingham physicists reveal the atomic arrangement by imaging the cluster with an electron microscope.
Friday, July 27, 2012
Scientists Discover way to fix Drugs with DNA
This is thought to be a crucial step forward for researchers who are developing drugs to combat cancer and other diseases.
Wednesday, February 08, 2006
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos