Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Identifying Protein 'Pockets' that Block Hallucinogens

Published: Wednesday, August 01, 2012
Last Updated: Wednesday, August 01, 2012
Bookmark and Share
Psychoactive drugs work by binding proteins in our brains and bodies and although these proteins have been a mystery, new research from the University of North Carolina is illuminating their structures.

In a paper published in Nature, a team of scientists from the University of North Carolina and elsewhere describe the chemical structure of the kappa opioid receptor (KOR). This cell protein binds Salvinorin A, a widely-abused hallucinogen known as “magic mint,” as well as other drugs.

The research team used a variety of tools to determine KOR’s structure, including protein engineering and chemical biology. The crucial step was crystallography. In this technique, a crystal of a protein is created whose orderly structure can be more easily identified.

“It took between three and four years in a collaboration to engineer the protein and get large amounts of it, and then another year or so of trial and error to get it to crystallize,” said Dr. Bryan Roth, professor of pharmacology at North Carolina and a co-author of the paper.

“With the crystals, it took less then a month to solve the structure.”

Because the protein’s “binding pocket” is so large, there may be a variety of drugs that could alter or diminish its ability to bind.

“Basically, the larger the binding pocket, the more likely many structurally different drugs can bind to it,” Roth said.

“We’re in the process of creating new drug-like compounds, using KOR’s structural data, for use as medications.”

Since opioid receptors play a large role in causing pain, depression and addiction, the key, notes Roth, will be creating drugs that interfere with KOR reception.

“When we activate KOR in the brain, we induce hallucinations. So we want to make KOR activators which only work outside the brain.”

Activating KOR elsewhere in the body could result in suppression of depression, anxiety and other disorders.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Smart Patch Releases Blood Thinners When Needed
Researchers have developed a smart patch that activelly monitors a patient's blood and releases blood thinning drugs when necessary.
Wednesday, November 30, 2016
Malaria Parasite Evades Rapid Test Detection in Children
A study at the University of North Carolina found that gene deletion poses a threat to Malaria eradication efforts.
Wednesday, November 23, 2016
Pollution Emitted Near Equator has Biggest Impact on Global Ozone
Research reveals changing global pollution emissions are generating imbalances in the production of ozone.
Thursday, November 10, 2016
Mimicking Evolution to Create Novel Proteins
A study by researchers in the Kuhlman lab offers a new route to design the 'cellular machines' needed to understand and battle diseases.
Monday, May 16, 2016
Scientists Create Painless Patch of Insulin-Producing Beta Cells to Control Diabetes
Researchers at UNC and NC State have developed the new “smart cell patch” to treat millions of people with type-1 and advanced type-2 diabetes.
Saturday, March 19, 2016
Device Hits Pancreatic Tumors Hard With Toxic Four-Drug Cocktail, Sparing The Body
Researchers at UNC have revealed that an implantable device can deliver a particularly toxic cocktail of drugs directly to pancreatic tumors to stunt their growth and shrink them.
Saturday, February 27, 2016
Stem Cells Turned into Cancer Killers
Skin cells turned cancer-killing stem cells hunt down and destroy the deadly remnants inevitably left behind when a brain tumor is surgically removed.
Friday, February 26, 2016
Stem Cells Turned into Cancer Killers
Skin cells turned cancer-killing stem cells hunt down and destroy the deadly remnants inevitably left behind when a brain tumor is surgically removed.
Friday, February 26, 2016
Potential Brain Cancer Drug Target
UNC Lineberger researchers have reporedt that when they removed Dicer from preclinical models of medulloblastoma, a common type of brain cancer in children, they found high levels of DNA damage in the cancer cells, leading to the cells’ death.
Friday, January 08, 2016
New Path for ALS Drug Discovery
For the first time, scientists pin down the structure of toxic clumps of a protein associated with a large number of ALS cases, opening new avenues in the pursuit of drugs to stem the disease.
Thursday, January 07, 2016
New Way to Force Stem Cells to Become Bone Cells
Potential therapies based on this discovery could help people heal bone injuries or set hardware, such as replacement knees and hips.
Monday, November 16, 2015
Autism Mutation Isolated – Could Be Treated with Specific Enzyme
The research shows the precise cellular mechanisms that could increase risk for the disorder and how an existing drug might help thousands of people with autism.
Monday, August 10, 2015
Researchers Find Two Biomarkers Linked to Severe Heart Disease
Study suggests that elevated oxidized LDL cholesterol and fructosamine – a measure of glycated proteins in blood sugar – are signposts for the development of severe coronary disease, especially in females.
Thursday, July 09, 2015
A Single-Cell Breakthrough
UNC School of Medicine scientist Scott Magness and collaborators use their newly developed technology to dissect properties of single stem cells. The advancement will allow researchers to study gastrointestinal disorders and cancers like never before.
Thursday, March 19, 2015
New Gene Therapy For Hemophilia Shows Potential As Safe Treatment
Research showed that bleeding events were drastically decreased in animals with hemophilia B. Using a viral vector to swap out faulty genes proved safe and could be used for the more common hemophilia A.
Tuesday, March 17, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Possible Treatment for Rare Vascular Disease
Researchers manage to reverse hereditary haemorrhagic telangiectasia in mice, if successful in humans it could lead to improved treatment for the disease.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!