Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stanford Researchers Solve Plant Sex Cell Mystery

Published: Wednesday, August 08, 2012
Last Updated: Wednesday, August 08, 2012
Bookmark and Share
For millennia, sex cells have stubbornly guarded the secret of their origin. The surprisingly simple answer – low oxygen levels – could change the way we breed plants.

The sex life of corn has gotten a lot of prurient attention over the years. By 5,000 B.C., agriculturalists in the Americas were already producing the first hybrid corn varieties by cross-pollinating plants to generate larger plants or colored kernels.

Today, hybrid seed production in corn is a multibillion-dollar industry, and crossbreeding is fundamental to the production of most other species as well. But despite plant reproduction's central role in agribusiness, researchers have never answered a basic question: Where do plant sex cells come from?

The answer, according to Stanford biology Professor Virginia Walbot and graduate student Timothy Kelliher, is surprisingly simple. In a set of elegant experiments – Walbot prides herself on "thinking of experiments you can do with basically no money" – the researchers demonstrated that low oxygen levels deep inside the developing flowers are all that is needed to trigger the formation of sex cells.
The discovery isn't only of academic interest.

"Controlling plant reproduction is fairly fundamental to modern agriculture," Walbot said.
In a corn industry that still detassels seed corn by hand as a way of controlling who fertilizes whom, a technique that switches sex cell production on or off could allow for dramatically increased control over plant crossbreeding.

The research paper appeared recently in the journal Science.

When two flowers love each other very much

All flowering plants produce pollen within structures called anthers, which in corn grow from the distinctive cluster of male flowers we know as the tassel. But before these anthers mature, they are arranged in a clover shape deep within the plant. The central cells within each of these clover-like lobes will turn into sex cells and, eventually, pollen.

The mechanism behind this development was unknown in plants. In animals, surrounding cells signal the germ line to begin forming from a single "founder cell." Walbot and Kelliher were leaning toward this view, having identified two promising signaling molecules, MAC1 and MSCA1. Plants that lacked the protein MAC1 developed too many germ cells. Plants that lacked MSCA1 had none at all.

Clearly, MAC1 was important for organizing the non-sexual cells around germ cells, while MSCA1 was necessary for cells to develop into sex cells. But the connection between the two, and what initially led to their expression, remained unclear.

A role for redox

Although most researchers assumed that, as in animals, sex cells were developing from a special set of cells with a predetermined predilection for the role, Walbot and Kelliher saw two clues that implied otherwise.

First, the physical arrangement of the sex cells didn't point to the existence of a single "founder." In fact, it suggested a scenario where "your position as a cell mattered more than who your parents were," Kelliher said.

Second, the way the MSCA1 enzyme operated suggested that oxygen levels might play a role in the signaling process.

The environment inside a plant can be either "oxidizing" – where oxygen is plentiful, and oxidation is favored – or "reducing" – where oxidation is prevented, usually by a lack of reactive oxygen, and the opposite process of reduction is favored. MSCA1 happened to send its signal through reduction – meaning that different oxygen levels might have different developmental effects.


To test the theory, the researchers inserted a probe deep into the immature anther tissue of corn. What they found was telling: unusually low oxygen levels – likely a side effect of the rapidly growing anthers' metabolic activity – at the precise time that cells were beginning to turn into sex cells.

Corn hose

To see if low oxygen alone was responsible for sex cell development, the researchers threaded a plastic hose into the developing anther and piped in mixtures of gases.


High concentrations of oxygen drastically decreased the number of sex cells. High concentrations of nitrogen gas, which is inert and provides a reducing environment, increased sex cell formation.

"It was a remarkably easy experiment," said Walbot. "We had the initial results in two days."

The researchers showed that low oxygen levels could even cause cells outside the anther lobes – which would never normally produce pollen – to develop into sex cells.

All together, Walbot explained, the evidence suggests that naturally occurring variations in oxygen levels inside the growing anther causes the central cells to become hypoxic first: "The cells that are most hypoxic then get to throw the switch."

Once oxygen levels drop below a certain threshold, MSCA1 is finally able to go to work and reduce its target, causing central cells to become sex cells. These cells then release MAC1, which in turn ensures that the outside cells don't become germline.

It's an inside-out differentiation pattern, utterly unlike what animal germlines do – which may explain why it took so long to be discovered.

"The plant takes advantage of its own structure to create this developmental signal," said Kelliher. "And then any cell can create the next generation as long as it's in the right place – you don't have to be specially designated. It's kind of a romantic idea."

Children of the corn research

Keeping a close watch over this entire plant fertility process is crucial for the hybrid seed industry. Fields are usually planted with two varieties of seed corn that are going to be crossbred. In order to keep plants from fertilizing themselves – which results in inferior-quality plants – all of the tassels of one species need to be removed.

This is an enormous task that requires specialized detasseling machines, followed up by people who check for plants that were missed.

"Currently they remove the tassels on 1 million acres of corn each year, at 20,000 plants per acre," said Walbot. "That's billions of hand-detasseled plants."

Sterile varieties of corn have been developed that don't require detasseling, but self-perpetuating versions have proven difficult to perfect. A low-oxygen sterilization method could make automated hybridization much simpler, allowing it to be applied to a large number of varieties.

"We leave those applications to industry," said Walbot. But the effects of the research could be wide-ranging. Assuming that the findings hold true for all flowering plants, as a number of research groups are now seeking to confirm, the discovery could open up a new level of fertility control for a huge array of crops.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,400+ scientific posters on ePosters
  • More Than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Method of Cancer Immunotherapy
Stanford chemists have dicovered a new form of cancer immunotherapy using sugar presence manipulation.
Wednesday, August 24, 2016
Bone Marrow Transplants Without Using Chemotherapy
Scientists have devised a way to destroy blood stem cells in mice without using chemotherapy or radiotherapy, both of which have toxic side effects.
Friday, August 12, 2016
Mapping Antibody Creation in Humans
Researchers have created the first, detailed map of the body's antibody production, which could suggest new treatment options for immune disorders.
Wednesday, August 03, 2016
Rapidly Generating Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
Saturday, July 23, 2016
New Treatment for Rare Blood Cancers
Drug called midostaurin showed promise in an international clinical trial led by a Stanford physician.
Wednesday, July 06, 2016
Guided Chemotherapy Missiles to Target Cancer Cells
Latching chemotherapy drugs onto proteins that seek out tumors could provide a new way of treating tumors in the brain or with limited blood supply that are hard to reach with traditional chemotherapy.
Tuesday, July 05, 2016
Link Between Canned Food, BPA Exposure Revealed
New Stanford research resolves the debate on the link between canned food and exposure to the hormone-disrupting chemical known as Bisphenol A, or BPA.
Friday, July 01, 2016
Guided Chemotherapy Missiles
Latching chemotherapy drugs onto proteins that seek out tumors could provide a new way of treating tumors in the brain or with limited blood supply that are hard to reach with traditional chemotherapy.
Monday, June 20, 2016
New Imaging Method Reveals Nanoscale Details about DNA
Enhancement to super-resolution microscopy shows orientation of individual molecules, providing a new window into DNA’s structure and dynamics.
Monday, June 20, 2016
$10M Grant Funds Infection-Focused Center
The new center will explore intracellular and intercellular processes by which salmonella bacteria, responsible for more than 100 million symptomatic infections annually, infect immune cells.
Wednesday, April 06, 2016
Resurrecting an Abandoned Drug
Previously discarded drug shows promise in helping human cells in a lab dish fight off two different viruses.
Wednesday, March 30, 2016
Fracking's Impact on Drinking Water Sources
A case study of a small Wyoming town reveals that practices common in the fracking industry may have widespread impacts on drinking water resources.
Wednesday, March 30, 2016
Imaging Cells and Tissues Under the Skin
First technique developed for viewing cells and tissues in three dimensions under the skin.
Tuesday, March 22, 2016
Glucose-Guzzling Immune Cells May Drive Coronary Artery Disease
Researchers at Stanford University have found excessive glucose uptake by inflammatory immune cells called macrophages, which reside in arterial plaques, may be behind coronary artery disease.
Wednesday, March 16, 2016
Ultra-Sensitive Test for Cancers, HIV
Test developed that is thousands of times more sensitive than current diagnostics.
Tuesday, March 15, 2016
Scientific News
Adoption of Three Dimensional Culture Models May Save Lives
Physiologically relevant cell models can detect chronic hepatotoxicity early in the drug discovery process.
Shedding Light on HIV Vaccine Design
Broadly speaking - Mathematical modelling of host-pathogen coevolution sheds light on HIV vaccine design.
AACC 2016 Sees Clinical Chemistry Labs Drive Precision Medicine Offerings
Biomarker assays to enable precision medicine and risk assessment, mass spec-based tests designed for use in clinical labs large and small, and liquid biopsy technology captured the spotlight at the AACC annual meeting.
Diverse Fungi Secrete Similar Suite of Decomposition Enzymes
A recent study reveals different fungal species secrete a rich set of enzymes that share similar functions, despite species-specific differences in the amino acid sequences of these enzymes.
Lower Mortality with Polyunsaturated Fat
In a study from Uppsala University the fatty acid linoleic acid (Omega 6) in subcutaneous adipose tissue was linked to lower mortality among older men followed over a 15-year period.
'Missing Evolutionary Link' of a Widely Used Natural Drug Source Found
A well-known family of natural compounds, called “terpenoids,” have a curious evolutionary origin. In particular, one question relevant to future drug discovery has puzzled scientists: exactly how does Nature make these molecules?
‘Lead Actors’ in Immune Cell Development
A new study, led by scientists at The Scripps Research Institute (TSRI), reveals a surprising twist in immune biology.
Probing How CRISPR-Cas9 Works
New study in Journal of Cell Biology examines DNA targeting dynamics in live cells.
Microbiome Impacts Tissue Repair, Regeneration
Researchers at the Stowers Institute have established a definitive link between the makeup of the microbiome, the host immune response, and an organism’s ability to heal itself.
Diagnosing Tumors of Unknown Origin
EPICUP® test is a tool that helps to identify up to 87% of cancers of unknown origin (COD).
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!