Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

NIH Uses Genome Sequencing to Help Quell Bacterial Outbreak in Clinical Center

Published: Friday, August 24, 2012
Last Updated: Thursday, August 23, 2012
Bookmark and Share
Genomics and microbiology experts collaborate in hospital infection control.

For six months last year, a deadly outbreak of antibiotic-resistant bacteria kept infection-control specialists at the National Institutes of Health’s Clinical Center in a state of high alert.

A New York City patient carrying a multi-drug resistant strain of Klebsiella pneumoniae, a microbe frequently associated with hospital-borne infections, introduced the dangerous bacteria into the 243-bed research hospital while participating in a clinical study in the summer of 2011.

Despite enhanced infection-control practices, including patient isolation, the K. pneumoniae began to spread to other Clinical Center patients at the alarming rate of one a week, ultimately colonizing 17 patients, of whom 11 died - six from infection and five from their underlying disease while infected.

To get the outbreak under control, Clinical Center staff collaborated with investigators at the National Human Genome Research Institute (NHGRI), also part of NIH, to use genome sequencing in the middle of this active hospital epidemic to learn how the microbe spread.

A report in the Aug. 22, 2012, early online edition of Science Translational Medicine describes how that collaboration helped quell the outbreak.

"Infectious outbreaks happen in every hospital in the world, afflicting millions of patients each year in the United States alone," said NHGRI Director Eric D. Green, M.D., Ph.D.

Green continued, "By marshaling the ability to sequence bacterial genomes in real time to accurately trace the bacteria as it spread among our Clinical Center patients, our researchers successfully elucidated what happened, which in turn has taught us some important lessons. This study gives us a glimpse of how genomic technologies will alter our approach to microbial epidemics in the future."

The outbreak began in June 2011 when a New York City hospital transferred a seriously ill 43-year-old woman to NIH. The admitting nurse noted that the patient’s medical history included multiple-drug resistant infections, leading Clinical Center staff to put her in isolation immediately and institute a number of other restrictions.

Despite these measures, immune-suppressed patients elsewhere in the hospital began to develop K. pneumoniae infections, but the Clinical Center staff could not determine whether the same strain of bacteria carried by the New Yorker caused the new infections.

"For decades, we used pulsed-field gel electrophoresis to differentiate bacterial strains," said Tara N. Palmore, M.D., the NIH Clinical Center's deputy hospital epidemiologist who led the outbreak investigation. This test produces a barcode-like pattern of bacterial DNA that shows whether strains are genetically similar. In K. pneumoniae, however, 70 percent of the strains in the United States belong to one strain type with one pattern. “This test is not very helpful for that organism," she said.

As the outbreak began, the Clinical Center staff teamed up with NHGRI researchers led by Julie Segre, Ph.D., an NHGRI senior investigator.

Dr. Segre had been working with the Clinical Center's Clinical Microbiology Department to study the evolution of bacterial antibiotic resistance when she heard about the outbreak.

“We were already trying to develop clinical molecular diagnostics tools,” Dr. Segre said, “We thought we could use genome sequencing to tell whether the K. pneumoniae from the first patient was the same strain as the one that infected the second patient.”

The hospital team sent samples of bacteria isolated from infected patients to the NIH Intramural Sequencing Center (NISC), a component NHGRI. NISC sequenced the DNA samples, and Dr. Segre’s team analyzed the results.

Where the pulse-field gel electrophoresis technique shows relatively crude patterns, genome sequence data shows precise differences, down to single genetic letters in the bacterial genome.

This sequencing proved that the strain of K. pneumoniae sickening all the patients in the Clinical Center originated with the patient from New York; that is, the outbreak had a single source.

“Genomic data can identify unexpected modes of transmission,” Dr. Segre said. “Though the transmission path is difficult to detect, the genomic data is indisputable.”

When combined with the traditional epidemiology tracking data, the genome sequence results showed that Patient 1 transmitted the bacteria to other patients on two separate occasions from infections on different parts of her body, creating two major clusters of infected patients.

Even as the epidemiologic and genomic investigation proceeded, the infection-control team in the NIH Clinical Center employed increasingly intensive strategies to stop the infection from spreading.

For example, they used a vapor of hydrogen peroxide to sanitize rooms and removed sinks and drains where K. pneumoniae had been detected. They also limited the activities of hospital staff and the use of equipment exposed to infected patients so the microbe could not spread to uninfected patients.

In addition, the NIH doctors treated the first patient’s infection with colistin, an older, toxic antibiotic considered a drug of last resort. Fortunately, the treatment worked and the patient recovered.

The infection-control interventions proved successful, and by the end of the year, no new cases arose in the Clinical Center, stemming the outbreak.

“Genome sequencing and analysis is our best hope for anticipating and outpacing the pathogenic evolution of infectious agents,” said Dr. Segre. “Though our practice of genomics did not change the way patients were treated in this outbreak, it did change the way the hospital practiced infection control.”

“This study makes it clear that genome sequencing, as it becomes more affordable and rapid, will become a critical tool for healthcare epidemiology in the future,” said David Henderson, M.D., NIH Clinical Center deputy director for clinical care and associate director for quality assurance and hospital epidemiology. His team is preparing a paper that will outline the use of genome sequencing within the methodology of infection control for similar outbreaks. “Now that we know what genome sequencing can do,” he said, “I anticipate this methodology will be rapidly adopted by the hospital epidemiology community.”

Over one million healthcare-associated infections (HAIs) occur across the spectrum of healthcare each year; in hospitals alone, the Centers for Disease Control and Prevention estimates that 1 in 20 hospitalized patients has an HAI.

These infections can be life threatening and also add to our growing health care costs, accounting for billions of dollars in excess health expenditures each year.

Multi-drug resistant K. pneumoniae is among the more dreaded infections because few effective treatments exist and it has a mortality rate of 40 percent.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Tuesday, November 24, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
Molecule Proves Key to Brain Repair After Stroke
Scientists found that a molecule known as growth and differentiation factor 10 (GDF10) plays a key role in repair mechanisms following stroke.
Tuesday, November 10, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
$21M Invested in Research Hubs in Developing Countries
The National Institutes of Health and other U.S. and Canadian partners are investing $20.9 million dollars over five years to establish seven regional research and training centers in low- and middle-income countries (LMICs).
Friday, October 09, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
NIH Announces High-Risk, High-Reward Research Awardees
NIH to fund 78 awards to support highly innovative biomedical research.
Wednesday, October 07, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos