Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Stanford and Intel Collaboration Synthesizes New Peptide Array

Published: Tuesday, August 28, 2012
Last Updated: Tuesday, August 28, 2012
Bookmark and Share
The collaboration has synthesized and studied a grid-like array of short pieces of a disease-associated protein on silicon chips normally used in computer microprocessors.

They used this chip, which was created through a process used to make semiconductors, to identify patients with a particularly severe form of the autoimmune disease lupus.

Although the new technology is focused on research applications, it has the potential to eventually improve diagnoses of a multitude of diseases, as well as to determine more quickly what drugs may be most effective for a particular patient. It may also speed drug development by enabling researchers to better understand how proteins interact in the body.

“When I see patients in the clinic right now, I may know they have arthritis, but I don’t know which of the 20 or 30 types of the disease they have,” said associate professor of medicine Paul (P.J.) Utz, MD, noting that existing methods can take days or even weeks to answer such questions. “Now we can measure thousands of protein interactions at a time, integrate this information to diagnose the disease and even determine how severe it may be. We may soon be able to do this routinely while the patient is still in the physician’s office.”

Utz is a co-senior author of the research, published online Aug. 19 in Nature Medicine. Postdoctoral scholar Chih Long Liu, PhD, and Madoo Varma, PhD, director and head of life science research operations and business strategy for Intel’s Integrated Biosystems Laboratory, are the other senior authors. Graduate student Jordan Price is the first author. The research was funded in part by Intel Corp., and Intel scientists created the protein array on the silicon chips for the Stanford researchers to study.

Within each of our cells, proteins enter into and disband physical relationships in dizzying succession — outdoing even our most-freewheeling Facebook friends. This intricate dance forms the machinery responsible for driving cell growth, sparking immune reactions and even causing disease. But understanding the microscopic minutiae of their fleeting attractions (why exactly is protein X hooking up with protein Y?), and the subsequent biological repercussions, has been difficult and time-consuming.

To better understand these interactions, researchers at Intel synthesized short segments of biological proteins, called peptides, on silicon wafers. To do so, they turned to the same process used to make semiconductors, employing a method using sequential steps of light exposure and chemical reactions called photolithography. The Stanford researchers then used the chip, which they’ve termed an Intel array, to analyze thousands of protein interactions simultaneously to diagnose disease, assess therapies and even design more-effective drugs.

The researchers hope to eventually embed an integrated semiconductor circuit within the microprocessor-ready silicon chip to create a sort of minicomputer that could take the guesswork and decision-making out of many clinical processes. It could perhaps spell out patient-specific diagnoses with letters of the alphabet, or identify which potential treatments are most likely to be effective.

The technology described in the study echoes that of DNA microarrays, in which thousands of unique nucleotide sequences are dotted on a glass slide in a grid-like pattern to identify patterns of gene expression in cells and tissues. Prior to the collaboration with Intel, Utz and his colleagues were using a similar technique for peptides — affixing them in defined patterns to glass or other substrates and then washing them with solutions of cellular or blood-borne proteins. A binding event between a protein in the solution, such as an antibody, and its slide-bound partner is indicated by a fluorescent signal, which is developed through a meticulous and lengthy series of detection steps.

About four years ago, however, researchers at Intel approached Utz and his colleagues with the idea of using silicon as a microarray platform to synthesize the peptides directly on the chip, rather than making the peptides separately and spotting them on the array using a robot.
“Honestly, we thought it wouldn’t work,” said Utz. But it did, and it had several advantages. For one thing, silicon is much less sticky to proteins than glass. As a result, researchers can skip some experimental steps meant to block random binding of peptides to the substrate. Silicon also allows the researchers to arrange the individual peptides more closely together, using the space much more efficiently. Finally, unlike glass, silicon alone does not fluoresce, making signal detection easier.

There’s also the promise of devising new, faster detection methods on the more-versatile silicon chip.

“If we couple these Intel arrays with an electronic detection method, for example, we could have real-time sensing over a period of minutes,” said Utz.

In the study, the researchers tested whether their array could help categorize patients with lupus — an autoimmune disease in which patients make antibodies that attack a type of protein in their cells called a histone (in addition to other proteins).

“Lupus is highly variable, and in some cases is quite severe,” said Utz. “About half of patients are likely to require more intensive therapy. We wanted to see whether we could identify these patients with our arrays.”

Using the new silicon chips, the researchers were able to identify patients with lupus who expressed high levels of antibodies against a particular histone called 2B. They then confirmed that these patients were precisely the ones struggling with a more severe form of the disease.
“Companies developing therapies to block the pathway responsible for this binding are now accepting patients with lupus for clinical trials without knowing which subset of disease they are in,” said Utz. “This method could potentially be used to identify only those patients likely to benefit, and aid in the identification of effective drugs.”

To make the discovery, the researchers made a microarray using the last 21 amino acids of histone 2B. Histones keep DNA packaged tightly within a cell’s nucleus; binding of various proteins to the exposed end of the histone selectively grants or excludes access to the packed genes. The global importance of the binding events, and the fact that autoimmune diseases like lupus arise when the body makes antibodies against the histone’s end, led the researcher to choose it for their first test of the technology.

In making the array, they synthesized every possible overlapping sequence of every length from the short string of amino acids: 1-21 (the full-length sequence) to 17-20 (four amino acids) to 2-20 (19 amino acids) and all other possible variations. Three of the amino acids are also sometimes modified to carry extra chemical groups that can enhance or impede protein binding. Including every possible length and combination of modified and unmodified amino acids gave nearly 9,000 unique peptide dots on the array. They then washed the chip with solutions of antibodies known to bind the sequence.

The pattern of binding showed that one antibody could recognize and bind to a sequence composed of only two amino acids of the original 21. Another required at least four amino acids, one of them modified, for binding. Analyzing the binding of solutions of other antibodies in each case delineated specific binding regions, or epitopes, within the original short sequence.
Understanding the binding at such levels of detail will allow researchers to tinker with drugs meant to disrupt, enhance or mimic biological reactions within our cells to create better therapies, or to understand how and why natural processes sometimes go awry.

The researchers are now exploring the use of the technique to help design influenza vaccines that elicit a strong immune response, as well as ways to incorporate the three-dimensional folding involved in most protein interactions.

Other Stanford researchers involved in the study include former research assistant Stephanie Tangsombatvisit; postdoctoral scholar Dan Levy, PhD; and associate professor of biology Or Gozani, MD, PhD.

In addition to Intel, the research was supported by the National Science Foundation; the Stanford Genome Training Program; the Donald E. and Delia B. Baxter Foundation; the Ellison Medical Foundation; the National Heart, Lung and Blood Institute; the Canadian Institute of Health; the Ben May Trust; the Floren Family Trust; the National Institutes of Health; and the European Union Seventh Framework Programme.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Unveil Sex-Linked Control of Genes
Many proteins interact with an RNA molecule called Xist to coat and silence one X chromosome in every female cell.
Wednesday, April 08, 2015
How Common Mutation in Asians Affects Heart Health
Researchers studied heart muscle cells derived from pluripotent stem cells to find out why a genetic mutation common in East Asians leads to an increased risk of heart disease.
Thursday, September 25, 2014
Researchers Invent Nanotech Microchip to Diagnose Type-1 Diabetes
The cheap, portable, microchip-based test could speed up diagnosis and enable studies of how the disease develops.
Sunday, July 13, 2014
New Mouse Model Reveals a Mystery of Duchenne Muscular Dystrophy
Children with Duchenne muscular dystrophy often die as young adults from heart and breathing complications.
Tuesday, July 09, 2013
Stem Cells Entering Heart can be Tracked with Nano-‘Hitchhikers,’ Scientists Say
The promise of repairing damaged hearts through regenerative medicine has yet to meet with clinical success. But a highly sensitive visualization technique may help speed that promise’s realization.
Friday, March 22, 2013
Immune Cells Engineered in Lab to Resist HIV Infection
Researchers at the Stanford University School of Medicine have found a novel way to engineer key cells of the immune system so they remain resistant to infection with HIV.
Wednesday, January 23, 2013
Stanford/Packard Autism Researchers Seek Twins for Brain-Imaging Study
Researchers are recruiting twins for an investigation of the role of genetics in shaping the autistic brain.
Monday, February 01, 2010
Scientists Identify Molecule that Inhibits Stem Cell Differentiation
Stanford scientists have now identified a molecule involved in keeping skin stem cells on the straight and narrow.
Friday, January 22, 2010
New Way to Control Protein Activity could Lead to Cancer Therapies, Stanford Study Shows
Scientists have found a way to quickly and reversibly fine-tune the activity of individual proteins in cells and living mammals.
Tuesday, September 30, 2008
Stanford Medicine Explores the Complex World of Clinical Trials
The summer issue of Stanford Medicine magazine explores clinical trials in a special report, “Trials on trial: Clinical studies under the microscope.”
Monday, August 11, 2008
Stanford Researchers Find Molecule that Kills Kidney Cancer Cells
A drug created from this newly found molecule would help fight the life-threatening disease while leaving patients’ kidneys intact, researchers say.
Thursday, July 10, 2008
Stanford Researchers Unmask Proteins in Telomerase, a Substance that Enables Cancer
Researchers have identified two new proteins that make up the telomerase complex and have a lead on several more.
Tuesday, March 25, 2008
Stem Cells Helped Repair Stroke Damage in Rats, Early Stanford Study Shows
Neural cells derived from hESC helped repair stroke-related damage in the brains of rats and led to improvements in their physical abilities after a stroke.
Thursday, February 21, 2008
Stanford Researchers say new Stem Cell Method has Promise
Researchers from Wisconsin and Japan had announced that they had reprogrammed adult human cells to act like embryonic stem cells.
Friday, November 23, 2007
Stanford Experts Outline Possible Criteria for Assessing Economic Benefits of State Stem Cell Funding
Stanford researchers have published a paper using a hypothetical model of a future treatment for diabetes as a way of examining the economic benefits of funding stem cell research.
Monday, May 21, 2007
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos