Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Manipulating the Microbiome Could help Manage Weight

Published: Thursday, August 30, 2012
Last Updated: Thursday, August 30, 2012
Bookmark and Share
UChicago researchers team was able to unravel some of the mechanisms that regulate this weight gain.

Vaccines and antibiotics may someday join caloric restriction or bariatric surgery as a way to regulate weight gain, according to a new study focused on the interactions between diet, the bacteria that live in the bowel and the immune system.

Bacteria in the intestine play a crucial role in digestion. They provide enzymes necessary for the uptake of many nutrients, synthesize certain vitamins and boost absorption of energy from food.

Fifty years ago, farmers learned that by tweaking the microbial mix in their livestock with low-dose oral antibiotics, they could accelerate weight gain.

More recently, scientists found that mice raised in a germ-free environment, and thus lacking gut microbes, do not put on extra weight, even on a high-fat diet.

In a study published Aug. 26 in the journal Nature Immunology, a research team based at the University of Chicago was able to unravel some of the mechanisms that regulate this weight gain.

They focused on the relationship between the immune system, gut bacteria, digestion and obesity. They showed how weight gain requires not just caloric overload but also a delicate, adjustable - and transmissible - interplay between intestinal microbes and the immune response.

“Diet-induced obesity depends not just on calories ingested but also on the host’s microbiome,” said the study’s senior author Yang-Xin Fu, professor of pathology at the University of Chicago Medicine.

For most people, he said, “host digestion is not completely efficient, but changes in the gut flora can raise or lower digestive efficiency.”

So the old adage “you are what you eat” needs to be modified, Fu suggested, to include, “as processed by the microbial community of the distal gut and as regulated by the immune system.”

To measure the effects of microbes and immunity, the researchers compared normal mice with mice that have a genetic defect that renders them unable to produce lymphotoxin, a molecule that helps to regulate interactions between the immune system and bacteria in the bowel. Mice lacking lymphotoxin, they found, do not gain extra weight, even after prolonged consumption of a high-fat diet.

On a standard diet, both groups of mice maintained a steady weight. But after nine weeks on a high-fat diet, the normal mice increased their weight by one-third, most of it fat. Mice lacking lymphotoxin ate just as much, but did not gain weight.

The high-fat diet triggered changes in gut microbes for both groups. The normal mice had a substantial increase in a class of bacteria (Erysopelotrichi) previously associated with obesity and related health problems.

Mice that lacked lymphotoxin were unable to clear segmented filamentous bacteria, which has previously been found to induce certain immune responses in the gut.

The role of gut microbes was confirmed when the researchers transplanted bowel contents from the study mice to normal mice raised in a germ-free environment - and thus lacking their own microbiome.

Mice who received commensal bacteria from donors that made lymphotoxin gained weight rapidly. Those that got the bacteria from mice lacking lymphotoxin gained much less weight for about three weeks, until their own intact immune system began to normalize their bacterial mix.

When housed together, the mice performed their own microbial transplants. Mice are coprophagic; they eat each other’s droppings. In this way, the authors note, mice housed together “colonize one another with their own microbial communities.”

After weeks together, even mice with the immune defect began to gain weight. They also were able to reduce the presence of segmented filamentous bacteria in their stool.

Moving from normal chow to the high-fat diet initiated a series of related changes, the authors found. First, it altered the balance of microbes in the digestive system. These changes in the microbiome altered the immune response, which then introduced further changes to the intestinal microbial community.

These changes “provide inertia for the obese state,” the authors said, facilitating more efficient use of scarce food resources.

“Our results suggest that it may be possible to learn how to regulate these microbes in ways that could help prevent diseases associated with obesity,” said Vaibhav Upadhyay, first author of the study and an MD/PhD student working in Fu’s laboratory. “We now think we could inhibit the negative side effects of obesity by regulating the microbiota and perhaps manipulating the immune response.”

Or, 20 years from now, “when there are 10 billion people living on earth and competing for food, we may want to tilt digestive efficiency in the other direction,” Fu added.

The authors cautioned, however, that with more than 500 different strains of bacteria present in the gut, “the precise microbes that promote such weight gain and the specific host responses that foster their growth need to be better established.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Microbiome Center to Merge Expertise of UChicago, MBL and Argonne
Researchers to study world of microbes across environments.
Wednesday, May 18, 2016
AbbVie, University of Chicago Collaborate
The University of Chicago and AbbVie have entered into a five-year collaboration agreement designed to improve the pace of discovery and advance medical research in oncology at both organizations.
Thursday, April 21, 2016
New Code for Control of Gene Expression
A new cellular signal discovered by a team of scientists at the University of Chicago and Tel Aviv University provides a promising new lever in the control of gene expression.
Thursday, February 18, 2016
Bacterial Circadian Clocks Set by Metabolism, Not Light
New study finds that metabolism is the primary driver of the circadian rhythm.
Monday, December 14, 2015
New Nanomanufacturing Technique Advances Imaging, Biosensing Technology
Researchers invent a novel way to build nanolenses in large arrays using a combination of chemical and lithographic techniques.
Thursday, December 10, 2015
Enormous Genetic Variation May Shield Tumors from Treatment
Debate over Darwinian selection vs. random mutations emerges at the tumor level.
Wednesday, November 11, 2015
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.
Monday, November 09, 2015
Protein Aggregation After Heat Shock Is An Organized, Reversible Response
New study finds protein aggregation after heat exposure is a reversible cellular process, not unrecoverable damage from misfolding.
Friday, September 11, 2015
New Form of DNA Modification May Carry Inheritable Information
Scientists have described the surprising discovery and function of a new DNA modification in insects, worms and algae.
Friday, May 08, 2015
Shape-Shifting Molecule Tricks Viruses Into Mutating Themselves To Death
Study uses two-dimensional infrared spectroscopy to help distinguish between normal and shape-shifted structures.
Thursday, April 16, 2015
Drug-Development Grants Focus On Sleep Apnea, Asthma Research
NIH grants awarded to two University of Chicago research teams will help to develop novel treatments for sleep apnea and asthma.
Tuesday, January 27, 2015
Gut Bacteria that Protect Against Food Allergies Identified
Common gut bacteria prevent sensitization to allergens in a mouse model for peanut allergy, paving the way for probiotic therapies to treat food allergies.
Wednesday, August 27, 2014
Researchers Identify ‘Fat Gene’ Associated with Obesity
Mutations within the gene FTO have been implicated as the strongest genetic determinant of obesity risk in humans, but the mechanism behind this link remained unknown.
Monday, March 17, 2014
Autism and Intellectual Disability Incidence Linked with Environmental Factors
Although autism and intellectual disability have genetic components, environmental causes are thought to play a role.
Monday, March 17, 2014
Staphylococcus Aureus Bacteria Turns Immune System Against Itself
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, including the antibiotic-resistant strain MRSA.
Friday, December 13, 2013
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
How Cancer Spreads in the Body
Cancer cells appear to depend on an unusual survival mechanism to spread around the body, according to an early study led by Queen Mary University of London (QMUL).
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
“Amazing Protein Diversity” Discovered in Maize
The genome of the corn plant – or maize, as it’s called almost everywhere except the US – “is a lot more exciting” than scientists have previously believed. So says the lead scientist in a new effort to analyze and annotate the depth of the plant’s genetic resources.
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!