Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scripps Led Team Awarded $22.5 Million for Immune Response Project

Published: Thursday, August 30, 2012
Last Updated: Thursday, August 30, 2012
Bookmark and Share
The team have received a five-year project renewal from the NIH to uncover the workings of the immune system.

The grant is focused on innovative technologies that will ultimately provide data for improving a wide range of human diseases that include viral and bacterial infections and inherited immune disorders.

"I’m delighted the National Institute of Allergy and Infectious Diseases has decided to continue supporting this important research," said the grant’s principal investigator Richard Ulevitch, who is a professor and chairman emeritus at Scripps Research. “Since the initiative began 10 years ago, the consortium has made seminal contributions to the field. Now, thanks to the new funding, there are more discoveries to come.”

The project takes an unusual wide-angle “genetic and systems biology” approach to learning how we stay healthy in the face of numerous microbes in our environment. In contrast to traditional hypothesis-driven research, in which a single gene or protein is selected for study based on its proposed function, team members assemble information about multiple genes, proteins, and biochemical pathways without preconceived ideas about function. This data is then integrated and examined from multiple perspectives to understand the immune response as a whole.

In addition to Ulevitch and his group at Scripps Research, the consortium includes the laboratories of Alan Aderem of the Seattle Biomedical Research Institute, Bruce Beutler of University of Texas Southwestern Medical Center, Christopher Goodnow of the Australian National University, and Garry Nolan of Stanford University.

Ulevitch notes that the group is now especially interested in the intersection between innate and adaptive immunity. Innate immunity, our body's first line of defense, can destroy foreign invaders and trigger inflammation that contributes to their demise. If microorganisms make it past this gauntlet, the body calls on adaptive immunity. Here, T cells, B cells, antibodies, and killer cells come into play; the adaptive immune system also stores "memories" of the offending microorganisms to be on the alert for future attacks.

The team is using a genetic approach in mice, known as “forward genetics,” to develop a detailed model of innate and adaptive immune responses to infection. “It is now crystal clear that data from mouse genetics provides insights into human disease,” Ulevitch said. “When we started there were a lot more unknowns, but now there is a long list of genes identified in the mouse that cause both specific mouse phenotypes and are similarly linked to human disease.”

The group provides resources to the scientific community at large, including a Web-based data portal to access the team’s findings (see www.systemsimmunology.org).

This program has received ongoing support from NIH since 2002. The NIH project number for the grant is U19 AI100627.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Friday, October 02, 2015
Key Morphine Regulator Identified
The findings could lead to less addictive pain medications.
Thursday, September 24, 2015
$6 Million Awarded to Develop Alternative HIV/AIDS Vaccine
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded up to nearly $6 million from the Bill & Melinda Gates Foundation to develop a revolutionary HIV/AIDS alternative vaccine that has demonstrated great potential in animal models.
Thursday, September 24, 2015
Novel Role of Mitochondria in Immune Function Identified
Scientists at The Scripps Research Institute (TSRI) have discovered a new role for an enzyme involved in cell death.
Monday, September 21, 2015
Scientists Make Strides in Therapy Preventing Addiction Relapse
Single Injection of Drug Candidate Prevents Meth Relapse in Animal Models.
Thursday, August 06, 2015
New Antibody Weapons Against Marburg Virus
A study has identified new immune molecules that protect against deadly Marburg virus, a relative of Ebola virus.
Tuesday, June 30, 2015
Team Led by TSRI Scientists Shows AIDS Vaccine Candidate Successfully ‘Primes’ Immune System
New research shows that an experimental vaccine candidate can stimulate immune activity necessary to prevent HIV infection.
Thursday, June 25, 2015
New Details of Potential Alzheimer’s Treatment Uncovered
Scientists from Florida’s Scripps Resarch Institute have uncovered suprising new details of potential Alzheimer’s treatment.
Wednesday, April 29, 2015
Search for Cancer Drug Candidates
Scripps Florida scientists awarded $1.2 million to find drug candidates that could treat a wide range of cancers.
Friday, April 10, 2015
Scripps Florida Scientists Win $1.5 Million Grant to Develop New Cancer Drugs
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded a $1.5 million grant from the National Institutes of Health (NIH) to develop drug candidates that could treat cancer and neurodegenerative disease.
Tuesday, March 24, 2015
Day-Night Cycles Linked to Mutations
TSRI scientists show that proteins critical in day-night cycles also protect cells from mutations.
Friday, March 13, 2015
More DNA & Extra Copies of Disease Gene in Alzheimer’s Brain Cells
Scientists at The Scripps Research Institute (TSRI) have found diverse genomic changes in single neurons from the brains of Alzheimer’s patients, pointing to an unexpected factor that may underpin the most common form of the disease.
Tuesday, February 24, 2015
Possible Neuron Killing Mechanism Behind Alzheimer’s and Parkinson’s Diseases Discovered
$1.4 million grant will enable team to follow up with search for drug candidates.
Tuesday, February 17, 2015
Microbes Prevent Malnutrition in Fruit Flies—and Maybe Humans, Too
Study shows that microbes play a critical role in nutritional disorders.
Friday, February 13, 2015
New Targets and Test to Develop Treatments for Memory Disorders
The study focuses on kinesin, a molecular motor protein that plays a role in the transport of other proteins throughout a cell.
Thursday, November 13, 2014
Scientific News
Criminal Justice Alcohol Program Linked to Decreased Mortality
Institute has announced that in the criminal justice alcohol program deaths dropped by 4.2 percent over six years.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
'Molecular Movie' Opens Door to New Cancer Treatments
An international team of scientists led by the University of Liverpool has produced a 'structural movie' revealing the step-by-step creation of an important naturally occurring chemical in the body that plays a role in some cancers.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Madison Researchers Begin Work on Zika Virus
Work will start with basic questions about Zika virus infection.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!