Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scripps Led Team Awarded $22.5 Million for Immune Response Project

Published: Thursday, August 30, 2012
Last Updated: Thursday, August 30, 2012
Bookmark and Share
The team have received a five-year project renewal from the NIH to uncover the workings of the immune system.

The grant is focused on innovative technologies that will ultimately provide data for improving a wide range of human diseases that include viral and bacterial infections and inherited immune disorders.

"I’m delighted the National Institute of Allergy and Infectious Diseases has decided to continue supporting this important research," said the grant’s principal investigator Richard Ulevitch, who is a professor and chairman emeritus at Scripps Research. “Since the initiative began 10 years ago, the consortium has made seminal contributions to the field. Now, thanks to the new funding, there are more discoveries to come.”

The project takes an unusual wide-angle “genetic and systems biology” approach to learning how we stay healthy in the face of numerous microbes in our environment. In contrast to traditional hypothesis-driven research, in which a single gene or protein is selected for study based on its proposed function, team members assemble information about multiple genes, proteins, and biochemical pathways without preconceived ideas about function. This data is then integrated and examined from multiple perspectives to understand the immune response as a whole.

In addition to Ulevitch and his group at Scripps Research, the consortium includes the laboratories of Alan Aderem of the Seattle Biomedical Research Institute, Bruce Beutler of University of Texas Southwestern Medical Center, Christopher Goodnow of the Australian National University, and Garry Nolan of Stanford University.

Ulevitch notes that the group is now especially interested in the intersection between innate and adaptive immunity. Innate immunity, our body's first line of defense, can destroy foreign invaders and trigger inflammation that contributes to their demise. If microorganisms make it past this gauntlet, the body calls on adaptive immunity. Here, T cells, B cells, antibodies, and killer cells come into play; the adaptive immune system also stores "memories" of the offending microorganisms to be on the alert for future attacks.

The team is using a genetic approach in mice, known as “forward genetics,” to develop a detailed model of innate and adaptive immune responses to infection. “It is now crystal clear that data from mouse genetics provides insights into human disease,” Ulevitch said. “When we started there were a lot more unknowns, but now there is a long list of genes identified in the mouse that cause both specific mouse phenotypes and are similarly linked to human disease.”

The group provides resources to the scientific community at large, including a Web-based data portal to access the team’s findings (see www.systemsimmunology.org).

This program has received ongoing support from NIH since 2002. The NIH project number for the grant is U19 AI100627.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Predicting Cell Changes that Affect Breast Cancer Growth
Researchers find small structural changes in a key breast cancer receptor that can predict cancer growth.
Tuesday, May 03, 2016
Secrets of a Deadly Virus Family Revealed
Scripps Research scientists uncover the glycoprotein structure of LCMV. The findings could guide development of treatments for Lassa fever.
Wednesday, April 27, 2016
First ‘Teenage’ HIV-Neutralizing Antibody Discovered
Scientists have studied the evolution of anti-HIV antibodies, with hopes of creating a vaccine to prevent AIDS.
Wednesday, April 06, 2016
Discovering 'Outlier' Enzymes
Researchers at TSRI and Salk Institute have discovered 'Outlier' enzymes that could offer new targets to treat type 2 diabetes and inflammatory disorders.
Saturday, April 02, 2016
Encouraging Foundation for Upcoming AIDS Vaccine Clinical Trial
Engineered vaccine protein binds key immune cells that exist in nearly everyone.
Tuesday, March 29, 2016
New Approach to Curbing Cancer Cell Growth
Using a new approach, scientists at The Scripps Research Institute (TSRI) and collaborating institutions have discovered a novel drug candidate that could be used to treat certain types of breast cancer, lung cancer and melanoma.
Monday, March 14, 2016
Vaccine Against Dangerous Designer Opioids
With use of synthetic opioid "designer drugs" on the rise, scientists from The Scripps Research Institute (TSRI) have a new strategy to curb addiction and even prevent fatal overdoses.
Thursday, February 18, 2016
Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Friday, October 02, 2015
Key Morphine Regulator Identified
The findings could lead to less addictive pain medications.
Thursday, September 24, 2015
$6 Million Awarded to Develop Alternative HIV/AIDS Vaccine
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded up to nearly $6 million from the Bill & Melinda Gates Foundation to develop a revolutionary HIV/AIDS alternative vaccine that has demonstrated great potential in animal models.
Thursday, September 24, 2015
Novel Role of Mitochondria in Immune Function Identified
Scientists at The Scripps Research Institute (TSRI) have discovered a new role for an enzyme involved in cell death.
Monday, September 21, 2015
Scientists Make Strides in Therapy Preventing Addiction Relapse
Single Injection of Drug Candidate Prevents Meth Relapse in Animal Models.
Thursday, August 06, 2015
New Antibody Weapons Against Marburg Virus
A study has identified new immune molecules that protect against deadly Marburg virus, a relative of Ebola virus.
Tuesday, June 30, 2015
Team Led by TSRI Scientists Shows AIDS Vaccine Candidate Successfully ‘Primes’ Immune System
New research shows that an experimental vaccine candidate can stimulate immune activity necessary to prevent HIV infection.
Thursday, June 25, 2015
New Details of Potential Alzheimer’s Treatment Uncovered
Scientists from Florida’s Scripps Resarch Institute have uncovered suprising new details of potential Alzheimer’s treatment.
Wednesday, April 29, 2015
Scientific News
Flowering Regulation Mechanism Discovered
Monash researchers have discovered a new mechanism that enables plants to regulate their flowering in response to raised temperatures.
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Nanoparticles Present Sustainable Way to Grow Food Crops
Nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans.
How Scientists Use DNA to Track Disease Outbreaks
They’re the top questions on everyone’s mind when a new disease outbreak happens: where did the virus come from? When did this happen? How long has it been spreading in a particular country or group of people?
Genetic Risk Factors of Disparate Diseases Share Similar Biological Underpinnings
Penn Institute for Biomedical Informatics and colleagues identify "roadmap" of disease mechanisms to identify candidate drug targets.
Drugs that May Combat Deadly Antibiotic-Resistant Bacteria Uncovered
Study identifies 79 compounds that inhibit carbapenem-resistant Enterobacteriaceae (CRE).
Stem Cells Know How to Unwind
Research led by the Babraham Institute with collaborators in the UK, Canada and Japan has revealed a new understanding of how an open genome structure supports the long-term and unrestricted developmental potential in embryonic stem cells.
HIV Particles Used to Trap Intact Mammalian Protein Complexes
Belgian scientists from VIB and UGent developed Virotrap, a viral particle sorting approach for purifying protein complexes under native conditions.
Childhood Asthma Research Receives $2M
Research into the impact of a child’s upbringing and social and physical environments on the development of asthma will receive $2 million to tackle the condition that affects as many as one in three Canadians.
Growing Stem Cells More Safely
Nurturing stem cells atop a bed of mouse cells works well, but is a non-starter for transplants to patients – Brown University scientists are developing a synthetic bed instead.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!