Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Speeding the Search for Better Carbon Capture

Published: Thursday, August 30, 2012
Last Updated: Thursday, August 30, 2012
Bookmark and Share
Berkeley Lab researchers help develop a computer model that identifies the best molecular candidates.

A computer model that can identify the best molecular candidates for removing carbon dioxide, molecular nitrogen and other greenhouse gases from power plant flues has been developed by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab), the University of California (UC) Berkeley and the University of Minnesota.

The model is the first computational method to provide accurate simulations of the interactions between flue gases and a special variety of the gas-capturing molecular systems known as metal-organic frameworks (MOFs).

It should greatly accelerate the search for new low-cost and efficient ways to burn coal without exacerbating global climate change.

Berend Smit, an international authority on molecular simulations who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley where he directs Berkeley’s Energy Frontier Research Center, co-led the development of this computational model with Laura Gagliardi, a chemistry professor at the University of Minnesota.

“We’ve developed a novel computational methodology that yields accurate force fields - parameters describing the potential energy of a molecular system - to correctly predict the adsorption of carbon dioxide and molecular nitrogen by MOFs with open metal sites,” Smit says.

“All previous attempts at developing such a methodology failed and most people gave up trying, but our model is applicable to a broad range of systems and can be used to predict properties of open-site MOFs that have not yet been synthesized.”

Smit and Gagliardi are the corresponding authors of a paper describing this research in the journal Nature Chemistry. The paper is titled “Ab initio carbon capture in open-site metal-organic frameworks.” Co-authors are Allison Dzubak, Li-Chiang Lin, Jihan Kim, Joseph Swisher, Roberta Poloni and Sergey Maximoff.

Given that the United States holds the world’s largest estimated recoverable reserves of coal, coal-burning power plants will continue to be a major source of our nation’s electricity generation for the foreseeable future.

However, given rising concerns over the contributions of burning coal to global climate change, there is an urgent need for an effective and economical means of removing greenhouse gases from flues before those gases enter the atmosphere.

Current technologies proposed for capturing greenhouse gas emissions, based on amines or other molecular systems, would use about one-third of the energy generated by the power plants. This “parasitic energy” would substantially drive up the price of electricity.

MOFs are crystalline molecular systems that can serve as storage vessels with a sponge-like capacity for capturing and containing carbon dioxide and other gases.

MOFs consist of a metal oxide center surrounded by organic “linker” molecules to form a highly porous three-dimensional crystal framework.

When a solvent molecule is applied during the formation of the MOF and is subsequently removed, the result is an unsaturated “open” metal site MOF that has an especially strong affinity for carbon dioxide.

“MOFs have an extremely large internal surface area and, compared to other common adsorbents, promise very specific customization of their chemistry and could dramatically lower parasitic energy costs in coal-burning power plants,” Smit says.

“However, there are potentially millions of variations of MOFs and since from a practical standpoint we can only synthesize a very small fraction of these materials, the search for the right ones could take years. Our model saves this time by enabling us to synthesize only those that are most ideal.”

Force field models developed to predict the adsorption properties of other MOFs typically underestimate the properties for open metal site MOFs by two orders of magnitude. This is because open metal site MOFs impose very different chemical environments from the MOFs that were considered in the original development of force field models.

Smit and his colleagues met the challenge of open site MOFs using quantum chemical calculations and a strategy based on the non-empirical model potential (NEMO) methodology.

“Under this NEMO methodology, the total electronic interaction energy obtained from quantum chemical calculations is decomposed into various contributing factors, such as electrostatic, repulsive, dispersion and so on,” Smit says.

Smit continued, “With the model we developed we were able to reproduce the experimental adsorption isotherms of carbon dioxide and molecular nitrogen and correctly predict the mixture isotherms at flue-gas conditions in Mg-MOF-74, an open metal site MOF that has emerged as one of the most promising for carbon dioxide capture.”

The generality of their methodology should enable Smit and his colleagues to develop force field models for broad combinations of different metals, linkers and topologies.

Work is already underway to apply the model to new amine-based systems for removing carbon dioxide from flue exhaust.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biofuel Proteomics
Joint BioEnergy Institute Researchers use proteomics to profile switchgrass.
Tuesday, March 10, 2015
New Lab Startup Afingen Uses Precision Method to Enhance Plants
Berkeley Lab breakthrough can lead to cheaper biofuels, improved crops, and new products from plants.
Saturday, November 01, 2014
New Spectroscopy Technique Provides Unprecedented Look into Photochemical Reactions
Two-dimensional electronic-vibrational spectroscopy can be used to simultaneously monitor electronic and molecular dynamics on a femtosecond time-scale.
Monday, July 14, 2014
Kelp Study Finds No Ocean-Borne Fukushima Radiation
Analysis shows no ocean-borne radiation from Fukushima detected on western U.S. shoreline.
Thursday, May 15, 2014
Bright Future for Protein Nanoprobes
Berkeley Lab researchers discover new rules for single-particle imaging with light-emitting nanocrystals.
Tuesday, March 18, 2014
Indian Company Licenses Berkeley Lab Invention for Arsenic-free Water
Technology could help save millions of lives in India and Bangladesh where tens of millions of people get their drinking water from tube wells highly contaminated with arsenic.
Thursday, March 13, 2014
New Details on the Molecular Machinery of Cancer
Berkeley lab researchers resolve EGFR activation mystery.
Monday, February 18, 2013
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!