Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Speeding the Search for Better Carbon Capture

Published: Thursday, August 30, 2012
Last Updated: Thursday, August 30, 2012
Bookmark and Share
Berkeley Lab researchers help develop a computer model that identifies the best molecular candidates.

A computer model that can identify the best molecular candidates for removing carbon dioxide, molecular nitrogen and other greenhouse gases from power plant flues has been developed by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab), the University of California (UC) Berkeley and the University of Minnesota.

The model is the first computational method to provide accurate simulations of the interactions between flue gases and a special variety of the gas-capturing molecular systems known as metal-organic frameworks (MOFs).

It should greatly accelerate the search for new low-cost and efficient ways to burn coal without exacerbating global climate change.

Berend Smit, an international authority on molecular simulations who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley where he directs Berkeley’s Energy Frontier Research Center, co-led the development of this computational model with Laura Gagliardi, a chemistry professor at the University of Minnesota.

“We’ve developed a novel computational methodology that yields accurate force fields - parameters describing the potential energy of a molecular system - to correctly predict the adsorption of carbon dioxide and molecular nitrogen by MOFs with open metal sites,” Smit says.

“All previous attempts at developing such a methodology failed and most people gave up trying, but our model is applicable to a broad range of systems and can be used to predict properties of open-site MOFs that have not yet been synthesized.”

Smit and Gagliardi are the corresponding authors of a paper describing this research in the journal Nature Chemistry. The paper is titled “Ab initio carbon capture in open-site metal-organic frameworks.” Co-authors are Allison Dzubak, Li-Chiang Lin, Jihan Kim, Joseph Swisher, Roberta Poloni and Sergey Maximoff.

Given that the United States holds the world’s largest estimated recoverable reserves of coal, coal-burning power plants will continue to be a major source of our nation’s electricity generation for the foreseeable future.

However, given rising concerns over the contributions of burning coal to global climate change, there is an urgent need for an effective and economical means of removing greenhouse gases from flues before those gases enter the atmosphere.

Current technologies proposed for capturing greenhouse gas emissions, based on amines or other molecular systems, would use about one-third of the energy generated by the power plants. This “parasitic energy” would substantially drive up the price of electricity.

MOFs are crystalline molecular systems that can serve as storage vessels with a sponge-like capacity for capturing and containing carbon dioxide and other gases.

MOFs consist of a metal oxide center surrounded by organic “linker” molecules to form a highly porous three-dimensional crystal framework.

When a solvent molecule is applied during the formation of the MOF and is subsequently removed, the result is an unsaturated “open” metal site MOF that has an especially strong affinity for carbon dioxide.

“MOFs have an extremely large internal surface area and, compared to other common adsorbents, promise very specific customization of their chemistry and could dramatically lower parasitic energy costs in coal-burning power plants,” Smit says.

“However, there are potentially millions of variations of MOFs and since from a practical standpoint we can only synthesize a very small fraction of these materials, the search for the right ones could take years. Our model saves this time by enabling us to synthesize only those that are most ideal.”

Force field models developed to predict the adsorption properties of other MOFs typically underestimate the properties for open metal site MOFs by two orders of magnitude. This is because open metal site MOFs impose very different chemical environments from the MOFs that were considered in the original development of force field models.

Smit and his colleagues met the challenge of open site MOFs using quantum chemical calculations and a strategy based on the non-empirical model potential (NEMO) methodology.

“Under this NEMO methodology, the total electronic interaction energy obtained from quantum chemical calculations is decomposed into various contributing factors, such as electrostatic, repulsive, dispersion and so on,” Smit says.

Smit continued, “With the model we developed we were able to reproduce the experimental adsorption isotherms of carbon dioxide and molecular nitrogen and correctly predict the mixture isotherms at flue-gas conditions in Mg-MOF-74, an open metal site MOF that has emerged as one of the most promising for carbon dioxide capture.”

The generality of their methodology should enable Smit and his colleagues to develop force field models for broad combinations of different metals, linkers and topologies.

Work is already underway to apply the model to new amine-based systems for removing carbon dioxide from flue exhaust.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biofuel Proteomics
Joint BioEnergy Institute Researchers use proteomics to profile switchgrass.
Tuesday, March 10, 2015
New Lab Startup Afingen Uses Precision Method to Enhance Plants
Berkeley Lab breakthrough can lead to cheaper biofuels, improved crops, and new products from plants.
Saturday, November 01, 2014
New Spectroscopy Technique Provides Unprecedented Look into Photochemical Reactions
Two-dimensional electronic-vibrational spectroscopy can be used to simultaneously monitor electronic and molecular dynamics on a femtosecond time-scale.
Monday, July 14, 2014
Kelp Study Finds No Ocean-Borne Fukushima Radiation
Analysis shows no ocean-borne radiation from Fukushima detected on western U.S. shoreline.
Thursday, May 15, 2014
Bright Future for Protein Nanoprobes
Berkeley Lab researchers discover new rules for single-particle imaging with light-emitting nanocrystals.
Tuesday, March 18, 2014
Indian Company Licenses Berkeley Lab Invention for Arsenic-free Water
Technology could help save millions of lives in India and Bangladesh where tens of millions of people get their drinking water from tube wells highly contaminated with arsenic.
Thursday, March 13, 2014
New Details on the Molecular Machinery of Cancer
Berkeley lab researchers resolve EGFR activation mystery.
Monday, February 18, 2013
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
Structure of Primary Cannabinoid Receptor is Revealed
The findings provide key insights into how natural and synthetic cannabinoids including tetrahydrocannabinol —a primary chemical in marijuana—bind at the CB1 receptor to produce their effects.
Illumina Contributes to ClinVar Database
The contribution includes variants of all classifications, from pathogenic to benign, identified during interpretation of whole genome sequences generated in the CLIA-certified, CAP-accredited Illumina Clinical Services Laboratory.
Overlooked Molecules Could Revolutionise our Understanding of the Immune System
Researchers have discovered that around one third of all the epitopes displayed for scanning by the immune system are a type known as ‘spliced’ epitopes.
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
Signaling Pathway Could Be Key to Improved Osteoporosis Treatment
Inhibition of SIK2 enzyme both stimulates bone formation and reduces bone breakdown in animal model.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos