Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gladstone Scientists Map Genomic Blueprint of the Heart

Published: Friday, September 14, 2012
Last Updated: Friday, September 14, 2012
Bookmark and Share
Findings could help scientists combat the underlying causes of congenital heart disease.

Scientists at the UCSF-affiliated Gladstone Institutes have revealed the precise order and timing of hundreds of genetic “switches” required to construct a fully functional heart from embryonic heart cells — providing new clues into the genetic basis for some forms of congenital heart disease.

In a study being published online today in the journal Cell, researchers in the laboratory of Gladstone Senior Investigator Benoit Bruneau, PhD, employed stem cell technology, next-generation DNA sequencing and computing tools to piece together the instruction manual, or “genomic blueprint” for how a heart becomes a heart. These findings offer renewed hope for combating life-threatening heart defects such as arrhythmias (irregular heart beat) and ventricular septal defects (“holes in the heart”).

“Congenital heart defects are the most common type of birth defects — affecting more than 35,000 newborn babies in the United States each year,” said Bruneau, who is the associate director of cardiovascular research at Gladstone, an independent and nonprofit biomedical-research organization.

“But how these defects develop at the genetic level has been difficult to pinpoint because research has focused on a small set of genes. Here, we approach heart formation with a wide-angle lens by looking at the entirety of the genetic material that gives heart cells their unique identity.”

The news comes at a time of emerging importance for the biological process called “epigenetics,” in which a non-genetic factor impacts a cell’s genetic makeup early during development — but sometimes with longer-term consequences. All of the cells in an organism contain the same DNA, but the epigenetic instructions encoded in specific DNA sequences give the cell its identity. Epigenetics is of particular interest in heart formation, as the incorrect on-and-off switching of genes during fetal development can lead to congenital heart disease — some forms of which may not be apparent until adulthood.

In this research — conducted in large part at Gladstone’s Roddenberry Center for Stem Cell Biology and Medicine, as well as in collaboration with the laboratory of Laurie Boyer, PhD,at the Massachusetts Institute of Technology — the scientists took embryonic stem cells from mice and reprogrammed them into beating heart cells by mimicking embryonic development in a petri dish. Next, they extracted the DNA from developing and mature heart cells, using an advanced gene-sequencing technique called ChIP-seq that lets scientists “see” the epigenetic signatures written in the DNA.

“But simply finding these signatures was only half the battle — we next had to decipher which aspects of heart formation they encoded,” said Jeffrey Alexander, a Gladstone and UCSF graduate student and one of the paper’s lead authors. “To do that, we harnessed the computing power of the Gladstone Bioinformatics Core. This allowed us to take the mountains of data collected from gene sequencing and organize it into a readable, meaningful blueprint for how a heart becomes a heart.”

Scientists Identify New Genes Involved in Heart Formation

The team made some unexpected discoveries. They found that groups of genes appear to work together in heart cells in a coordinated fashion — switching on and off as a group at designated times during embryonic development. The scientists not only identified a whole host of new genes involved in heart formation, but they also refined exactly how these newly discovered genes interact with previously known genes.

The human-health implications of mapping the genomic blueprint of the heart are far reaching. Now that scientists understand how these genes control the heart, they can begin to piece together how heart disease disrupts this regulation. Eventually, they can look for therapies to prevent, interrupt or counteract those disruptions in children who suffer from congenital heart disease.

“Our findings reveal new clues as to how complex genetic and epigenetic patterns are precisely regulated during heart formation,” said Boyer. “In particular, our identification of key segments of the genome that contribute to this process will hopefully allow us to identify the genetic causes of many forms of congenital heart disease — an important first step in the fight against this devastating disease.”

“Next, we hope to examine the DNA of patients living with congenital heart disease, in the hopes that we can pinpoint the specific genetic disruption that caused their heart defect,” said Bruneau, who is also a professor of pediatrics at the University of California, San Francisco, with which Gladstone is affiliated. “Once we identify that disruption, we can begin exploring ways to restore normal gene function during early heart formation — and reduce the number of babies born with debilitating, and sometimes fatal, congenital heart defects.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
Scientific News
Breaking Cell Barriers with Retractable Protein Nanoneedles
Adapting a bacterial structure, institute researchers have developed protein actuators that can mechanically puncture cells.
Gene Signature could Lead to a New Way of Diagnosing Lyme Disease
Lyme disease patients had distinctive gene signatures that persisted for at least three weeks, even after they had taken the antibiotics.
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!