Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Quantitative Approach to Nucleophilic Organocatalysis

Published: Monday, September 17, 2012
Last Updated: Monday, September 17, 2012
Bookmark and Share
In this review article researchers demonstrate that important information can be obtained by specifically synthesizing relevant intermediates and studying the kinetics of their reactions with nucleophiles or electrophiles.

Abstract
The key steps in most organocatalytic cyclizations are the reactions of electrophiles with nucleophiles. Their rates can be calculated by the linear free-energy relationship log k(20 °C) = sN(E + N), where electrophiles are characterized by one parameter (E) and nucleophiles are characterized by the solvent-dependent nucleophilicity (N) and sensitivity (sN) parameters. 

Electrophilicity parameters in the range –10 < E < –5 were determined for iminium ions derived from cinnamaldehyde and common organocatalysts, such as pyrrolidines and imidazolidinones, by studying the rates of their reactions with reference nucleophiles. Iminium activated reactions of α,β-unsaturated aldehydes can, therefore, be expected to proceed with nucleophiles of 2 < N < 14, because such nucleophiles are strong enough to react with iminium ions but weak enough not to react with their precursor aldehydes. With the N parameters of enamines derived from phenylacetaldehyde and MacMillan’s imidazolidinones one can rationalize why only strong electrophiles, such as stabilized carbenium ions (–8 < E < –2) or hexachlorocyclohexadienone (E = –6.75), are suitable electrophiles for enamine activated reactions with imidazolidinones. Several mechanistic controversies concerning iminium and enamine activated reactions could thus be settled by studying the reactivities of independently synthesized intermediates. 

Kinetic investigations of the reactions of N-heterocyclic carbenes (NHCs) with benzhydrylium ions showed that they have similar nucleophilicities to common organocatalysts (e.g., PPh3 , DMAP, DABCO) but are much stronger (100–200 kJ mol –1 ) Lewis bases. While structurally analogous imidazolylidenes and imidazolidinylidenes have comparable nucleophilicities and Lewis basicities, the corresponding deoxy Breslow intermediates differ dramatically in reactivity. The thousand-fold higher nucleophilicity of 2-benzylidene-imidazoline relative to 2-benzylidene-imidazolidine is explained by the gain of aromaticity during electrophilic additions to the imidazoline derivatives. O-Methylated Breslow intermediates are a hundred-fold less nucleophilic than deoxy Breslow intermediates. 

The article is published online in Beilstein Journal of Organic Chemistry and is free to access.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!