Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Informatics Approach Helps Doctors, Patients Make Sense of Genome Data

Published: Friday, September 21, 2012
Last Updated: Friday, September 21, 2012
Bookmark and Share
Researchers from UNC unveil an analysis framework aimed at helping clinicians spot “medically actionable findings” from genetic tests in an efficient manner.

The cost of sequencing the entire human genome, or exome – the regions of the genome that are translated into proteins that affect cell behavior – has decreased significantly, to the point where the cost of looking at the majority of a patient’s genomic data may be less expensive than undertaking one or two targeted genetic tests.  While efficient, the acquisition of this much genetic data – in some cases as many as 1.5 to 2 million variants – creates other challenges.

In a paper that appears today in the advance online edition of Genetics in Medicine, researchers from the University of North Carolina at Chapel Hill unveil an analysis framework aimed at helping clinicians spot “medically actionable findings” from genetic tests in an efficient manner.

“The challenge for medical geneticists is what do we do with the ‘incidentalome’ – the large amount of genetic data that these tests generate which may be important but which was incidental – that is, had nothing to do with why the patient underwent DNA analysis in the first place,” said Jonathan Berg, MD, PhD, assistant professor of clinical genetics and a member of UNC Lineberger Comprehensive Cancer Center.

“Our team is faced with this issue in a clinical trial we are conducting called the NC GENES study.  So we put together a framework that classifies genetic variations into three different ‘bins’:  those that are linked to a treatable or preventable condition (the medically actionable); those that have a known link to conditions for which we don’t have treatment options; and those for which there is no known direct association between a genetic variation and a disorder,” he said.

The team then created an informatics approach to carry out a structured analysis on these three ‘bins’.

“While there are still some challenges, we believe that this approach facilitates the analysis and streamlines the ability of the molecular analyst to go through a lot of data very quickly, providing more timely results to physicians and patients,” says Berg.

Berg notes that the researchers had to set a very high bar for the genetic variants reported to patients and physicians, taking into account that there are errors in all of the current databases of known disease-causing mutations and that they contain variants that are probably not disease causing, due to unavoidable errors in data processing and other aspects of genetic research.  However, because most hereditary disorders are very rare, disease causing mutations are highly unlikely.

“In epidemiologic terms we valued specificity over sensitivity.  We will have some false negatives because we are ignoring some genetic variants that we don’t understand well or that are very unlikely to occur.  However, as researchers who also work with patients, we know that there are significant consequences to false positive results for genetic disorders and given the rarity of many of these disorders we think this is an appropriate risk,” he argues.

Berg and his collaborators, which include James Evans, MD, PhD, Bryson Distinguished Professor of Genetics Research and a member of UNC Lineberger, are also studying the practical consequences of our ability to pinpoint disease-causing mutations in the genome.

“We hope that this methodology will enhance our ability to quickly translate a large amount of data into findings that are useful to physicians and patients, allowing us to study important issues like patient preference for learning about their likelihood of developing or passing along a hereditary disease for which there is no treatment,” said Evans.

“These are important ethical considerations, and currently there exist no best practices because this technology is still relatively new,” he added.

In addition to Berg and Evans, the research team included Michael Adams, MS, and Kristy Lee, MS from the UNC Department of Genetics, Kirk Wilhelmsen, MD, PhD from the Department of Genetics, the Carolina Center for Genome Sciences (where Berg and Evans are also members), and the Renaissance Computing Institute, and Nassib Nassar, PhD, Chris Bizon, PhD, and Charles Schmitt, PhD, from the Renaissance Computing Institute.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Find Two Biomarkers Linked to Severe Heart Disease
Study suggests that elevated oxidized LDL cholesterol and fructosamine – a measure of glycated proteins in blood sugar – are signposts for the development of severe coronary disease, especially in females.
Thursday, July 09, 2015
A Single-Cell Breakthrough
UNC School of Medicine scientist Scott Magness and collaborators use their newly developed technology to dissect properties of single stem cells. The advancement will allow researchers to study gastrointestinal disorders and cancers like never before.
Thursday, March 19, 2015
New Gene Therapy For Hemophilia Shows Potential As Safe Treatment
Research showed that bleeding events were drastically decreased in animals with hemophilia B. Using a viral vector to swap out faulty genes proved safe and could be used for the more common hemophilia A.
Tuesday, March 17, 2015
Genetically Speaking, Mammals Are More Like Their Fathers
A first of its kind study shows that who we inherit genetic variants from – our mother or father – is crucial for the development of diseases and for research studies aimed at finding causes and potential treatments.
Wednesday, March 04, 2015
Key Protein That Allows Plavix To Conquer Platelets Found
The findings could lead to more personalized approaches to controlling platelet activity during heart attacks and other vascular emergencies and diseases.
Wednesday, February 25, 2015
Researchers Silence Leading Cancer-Causing Gene
A novel siRNA-based molecule successfully targets KRAS, a well-studied but hard to halt protein important for cancer development and metastasis.
Monday, November 17, 2014
Blood Test May Help Determine Psychosis Risk
A study led by University of North Carolina at Chapel Hill researchers represents an important step forward in the accurate diagnosis of people who are experiencing the earliest stages of psychosis.
Tuesday, September 23, 2014
New Gene Therapy Proves Promising as Hemophilia Treatment
Researchers package specialized blood platelets with genes that express clotting factor, leading to fewer bleeding events.
Wednesday, December 18, 2013
New Findings Regarding DNA Damage Checkpoint Mechanism in Oxidative Stress
Scientists uncover previously unknown surveillance mechanism.
Thursday, June 20, 2013
Medical Diagnostics Company STAT-Diagnostica Secures $22.1 Million in Financing
Proceeds will be used to complete development of the company’s Near Patient Testing diagnostic system and clinical validation of its first products.
Tuesday, May 07, 2013
Researchers Pinpoint How Trees Play Role in Smog Production
After years of scientific uncertainty and speculation, researchers show exactly how trees help create one of society’s predominant environmental and health concerns: air pollution.
Tuesday, May 07, 2013
Molecular Twist Helps Regulate the Cellular Message to Make Histone Proteins
Researchers show for the first time how two key proteins in messenger RNA communicate via a molecular twist to help maintain the balance of histones to DNA.
Monday, January 21, 2013
Identifying Protein 'Pockets' that Block Hallucinogens
Psychoactive drugs work by binding proteins in our brains and bodies and although these proteins have been a mystery, new research from the University of North Carolina is illuminating their structures.
Wednesday, August 01, 2012
Molecular Delivery Truck Serves Gene Therapy Cocktail
University of North Carolina scientists have devised a gene therapy cocktail that has the potential to treat some inherited diseases associated with “misfolded” proteins.
Tuesday, August 23, 2011
Clinical Trial of Molecular Therapy for Muscular Dystrophy Yields Significant Positive Results
A molecular technique originally developed at the University of North Carolina at Chapel Hill has taken one step closer to becoming a treatment for the devastating genetic disease Duchenne muscular dystrophy.
Tuesday, July 26, 2011
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!