Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Professor Publishes Paper on First-ever Imaging of Cells Growing on Spherical Surfaces

Published: Tuesday, September 25, 2012
Last Updated: Tuesday, September 25, 2012
Bookmark and Share
Potential applications includethe early detection and isolation of cancer cells.

Shengyuan Yang, Florida Institute of Technology assistant professor of mechanical and aerospace engineering, with graduate student Sang Joo Lee, has published a paper on the first-ever imaging of cells growing on spherical surfaces. The paper is published in the online journal, Review of Scientific Instruments, and will appear later in September in the print version.

“In previously published research, the cell substrates are not defined as spherical surfaces. Our glass balls (from 5 microns to 2 mm) are commercial products and are clearly defined as balls. Additionally, we are growing single cells on these balls to study cell mechano-biological responses to substrate curvatures,” said Yang.

The potential biomedical applications of the researchers’ technique include new strategies and devices for the early detection and isolation of cancer cells, facilitating new methods of treating cancer tissues. “We also foresee new strategies and techniques to control the differentiation of stem cells and the morphologies and structures of the resulting cells and tissues,” said Yang.

The effects of substrate stiffness on cell behaviors have been extensively studied; however, the effects of substrate curvature are not well-documented. The curvature of the surface on which cells adhere can have profound effects on cell behaviors, according to Yang.

“To reveal these cell mechano-biological responses to substrate curvatures, we have introduced a novel, simple, and flexible class of substrates, polyacrylamide gels embedded with micro glass balls ranging in diameter from 5 microns to 2 mm, to culture cells. To the best of our knowledge, this is the first experimental attempt to study cell responses to spherically-shaped substrates. Our cell culture experiments imply that this class of substrates, micro glass ball embedded gels, can be useful tools to study cell mechanobiological responses to substrate curvatures, related cell and tissue engineering researches, and biomedical applications, such as cancer detection and treatment, and the control of stem cell differentiations, for example,” said Yang.

This work was supported with funding from the National Science Foundation (NSF) CAREER Program. The reviewer of this paper at Review of Scientific Instruments commented, according to Yang: “This is a clever idea. . . This work has great potentials with high impact.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!