Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Whitehead Members to Help Establish International Stem Cell Research Center

Published: Tuesday, October 02, 2012
Last Updated: Tuesday, October 02, 2012
Bookmark and Share
Three Members of the Whitehead Institute faculty are poised to play significant roles in the establishment of a new stem cell research center based in suburban Moscow.

Whitehead Founding Member Rudolf Jaenisch, and Members Richard Young and Peter Reddien, will contribute their research, educational, and entrepreneurial expertise to the Skolkovo Center for Stem Cell Research (SCSCR). The center is among the first of three core research facilities to be created at Skolkovo Tech, a private graduate research university in Skolkovo, Russia, established in 2011 in collaboration with Massachusetts Institute of Technology.

Skolkovo Tech’s research centers—known as Centers for Research, Education, and Innovation (CREIs)— are intended to advance scientific understanding in a particular field, develop cutting-edge technologies for potential commercialization, attract world-class scientists to Skolkovo, and train the next generations of promising students. CREIs are international partnerships consisting of researchers from at least three universities or research institutes: Skolkovo Tech, a Russian university or institute, and a non-Russian university. As part of SCSCR, the Whitehead scientists will join a team under the direction of Peter Lansdorp, Director of the European Research Institute for the Biology of Aging at University of Groningen Medical Center UMCG in the Netherlands.

“This is a very promising experiment,” Lansdorp says. “By stimulating international collaboration, it is certain to advance stem cell science while at the same time helping Russian students—trained by leading stem cell scientists from Whitehead Institute and the Netherlands—to become productive scientists in Moscow."

Within SCSCR, Lansdorp, Jaenisch, Young, Reddien and others will tackle some of the most fundamental challenges to the development of stem-cell-based therapeutics, including optimizing methods for cellular reprogramming, pluripotent stem cell differentiation, and the identification of gene networks involved in stem cell regulation and regeneration.

Although funding details for the stem cell center are not yet final, Skolkovo officials say that a typical CREI receives about $10 million worth of funding, depending on the scope of each research program.

“Skolkovo’s research centers are unique in their synergy between scientific knowledge and practical application, which originates through various institutes working together in a new way,” says Skolkovo Tech President Edward Crawley. “Russian researchers gain access to cutting edge technologies and the opportunity to integrate into the world's scientific community, our international partners will benefit from the academic knowledge and new ideas produced within Russian institutes, and Skolkovo Tech will attract the world's best scientists to create its educational and research programs.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Paired Genes in Stem Cells Shed New Light on Gene Organization and Regulation
Researchers have determined that DNA transcription also runs in the opposite direction along the DNA to create corresponding long noncoding RNAs (lncRNAs).
Wednesday, February 06, 2013
Aggressive Cancer Exploits MYC Oncogene to Amplify Global Gene Activity
For a cancer patient, over-expression of the MYC oncogene is a bad omen.
Tuesday, October 02, 2012
Scientific News
Microdroplet Reactors Mimic Living Systems
Researchers use microdroplets to study non-equilibrium reactions like those in living organisms.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Envigo Rat Models Proven to be Susceptible to Intra-Vaginal HSV-2 Infection and Protectable
Scientific findings establish the effectiveness of new approach to investigate the protective effects of vaccine candidates and anti-viral microbodies and to study asymptomatic primary genital HSV-2 infection.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!