Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Duke Blue Light Controls Gene Expression

Published: Wednesday, October 03, 2012
Last Updated: Wednesday, October 03, 2012
Bookmark and Share
New approach could greatly improve ability of researchers and physicians to control gene expression.

Using blue light, Duke University bioengineers have developed a system for ordering genes to produce proteins, an advance they said could prove invaluable in clinical settings as well as in basic science laboratories.

This new approach could greatly improve the ability of researchers and physicians to control gene expression, which is the process by which genes give instructions for the production of proteins key to all living cells.

"We can now, with our method, make gene expression reversible, repeatable, tunable, and specific to different regions of a gene," said Lauren Polstein, a graduate student working in the laboratory of Charles Gersbach, assistant professor of biomedical engineering at Duke's Pratt School of Engineering. "Current methods of getting genes to express can achieve some of those characteristics, but not all at once."

The new system can also control where the genes are expressed in three dimensions, which becomes especially important for researchers attempting to bioengineer living tissues.

"The light-based strategy allows us to regulate gene expression for biotechnology and medical applications, as well as for gaining a better understanding of gene function, interactions between cells, and how tissues develop into particular shapes," Polstein said.

The results of the Duke experiments were published online in the Journal of the American Chemical Society. The research was supported by a Faculty Early Career Development Award from the National Science Foundation and a Director's New Innovator Award from the National Institutes of Health.

The Duke system, which has been dubbed LITEZ (Light Induced Transcription using Engineered Zinc finger proteins), combines proteins from two diverse sources. The light-sensitive proteins are derived from a common flowering plant (Arabidopsis thaliana).

"We hijacked the specific proteins in plants that allows them to sense the length of the day," Gersbach said.

The second protein is in a class of so-called zinc finger proteins, which can be readily engineered to attach to specific regions of a gene. They are ubiquitous in biomedical research.

These new fusions of plant and zinc finger proteins are introduced into a colony of human cells growing in a Petri dish. The dish is placed atop a blue LED light display designed and built by Polstein. When the light is turned on, the part of the protein that turns genes on is recruited to whatever gene the researchers have targeted with the zinc finger protein and this gene "lights up."

"By placing a mask, or stencil over the cells, we can control which cells turn on the gene and which cells do not," Polstein said. "We can control the expression by turning the light on or off, changing the light's intensity, or varying the location of light."

As a whimsical example, the researchers created the iconic blue Duke "D" by covering the cells with a "D" mask.

"All biological systems depend on gene expression," Gersbach said. "The challenge facing bioengineering researchers is trying to synthetically recreate processes that occur in nature."

"LITEZ is a powerful tool that gives us precise control of gene expression with high resolution in both space and time," Gersbach said. "It also has the potential to be incorporated into different applications in medicine or industry, including gene therapy, metabolic engineering, synthetic biology, and biopharmaceutical production."

The researchers are now refining their approach to create complex tissues by controlling cell differentiation, as well as the morphology, or shape, of the tissues that these cells make.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
Wednesday, November 23, 2016
Key Protein for Spinal Cord Repair Identified
Researchers have identifed healing proteins that bridge severed spinal tissue in zebrafish, leading to spinal repair.
Monday, November 07, 2016
Bacterial Genes Boost Current in Human Cells
Borrowing and tweaking bacterial genes to enhance electrical activity might treat heart, nervous system injury.
Wednesday, October 19, 2016
Converting Isolated Cells with Gene Editing
Researchers have used CRISPR to generate neuronal cells from isolated connective tissue.
Tuesday, August 23, 2016
Directly Reprogramming a Cell's Identity with Gene Editing
Duke engineers use CRISPR to generate neuronal cells from connective tissue.
Friday, August 12, 2016
New ‘Mega-Complex’ Involved in Cell Signaling Discovered
Duke Health-led researchers have discovered new information about the signaling mechanism of cells that could one day help guide development of more specific drug therapies.
Tuesday, August 09, 2016
Disentangling the Plant Microbiome
Study says breeding plants, to feed a growing global population, with more beneficial bacteria is far from simple.
Thursday, July 14, 2016
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
Thursday, May 26, 2016
Poliovirus Therapy Wins 'Breakthrough' Status
FDA decision will fast-track research on breakthrough Duke brain cancer therapy.
Wednesday, May 18, 2016
Enzyme Structure May Aid Antibiotic Development
Targeted enzyme is essential to every known strain of bacteria.
Wednesday, April 20, 2016
Coding and Computers Help Spot Methane, Explosives
Coded apertures improve and shrink mass spectrometers for field use.
Tuesday, April 19, 2016
Why Bearcats Smell Like Buttered Popcorn
Researchers pinpoint chemical compound that gives rare animal its popcorn-like scent.
Friday, April 15, 2016
Antibiotics Don't Promote Swapping of Resistance Genes
Bacterial resistance spreads through population dynamics, not an increase in gene transfers.
Wednesday, April 13, 2016
Genetic Elements that Drive Regeneration
Limb or organ regrowth may be hidden in our genes.
Friday, April 08, 2016
Immunity Genes Could Protect Some From E. Coli
When a child comes home from preschool with a stomach bug that threatens to sideline the whole family for days, why do some members of the family get sick while others are unscathed?
Monday, January 25, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!