Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

In Cancer, an Embryonic Mechanism Gone Awry

Published: Monday, October 08, 2012
Last Updated: Monday, October 08, 2012
Bookmark and Share
Many types of cancer could originate from a mechanism that cells use to silence genes.

This process, which is essential in embryonic development, might be accidentally reactivated in tumor cells, according to EPFL scientists.

There are some genes that are only activated in the very first days of an embryo’s existence. Once they have accomplished their task, they are shut down forever, unlike most of our genes, which remain active throughout our lives. EPFL scientists have unveiled part of this strange mechanism. The same process, accidentally initiated later in life, could be responsible for many kinds of cancer. The discovery is described in a recent article in the journal Cell Reports.

The researchers identified a group of proteins that play a key role in this phenomenon. They bind to a DNA sequence near the gene, and substitute one DNA element for another, essentially “marking” the sequence. This phenomenon is known as “methylation.” Once the marker is in place, the cellular machinery recognizes the sign and maintains the gene in a dormant state.

“It’s an extremely elegant mechanism. The genes are needed right at the beginning of embryonic development, but rather than deactivate them every time a cell divides, the job is done in one fell swoop, once the genes are no longer required,” explains EPFL professor Didier Trono, who co-authored the article. “This process is also involved in the control of viral sequences, which make up almost half of our genome, and must be inactivated very early in development.”

This gene-silencing mechanism, which normally takes place in a several-day-old embryo, can also occur accidentally later in life. In many cancer cells, certain genes have been marked by methylation; they have been silenced. If, for example, the gene responsible for controlling cell division has been methylated, the consequences are all too easy to imagine. “The embryonic process, which is designed to silence certain genes, can be fortuitously reactivated, leading to the formation of tumor cells.”

It is still not understood why the process stops after the first days of embryogenesis, even though many of the active proteins continue to be expressed in the cell, says Trono. “If we can figure out how this cellular clock works, then we would perhaps be able to understand how the mechanism is reactivated later, leading to the development of cancer.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Highly Sensitive Graphene Based Sensor
Researchers at EPFL and ICFO have developed a sensor made from graphene to detect molecules such as proteins and drugs.
Friday, July 17, 2015
New Method For Measuring The Concentration Of Medicines In The Blood
Researchers at EPFL have come up with a quick and portable new device for measuring the amount of medicinal drugs in blood.
Thursday, May 14, 2015
Breath Test For Detecting Head And Neck Cancer
A portable device can detect the presence of certain types of cancer in people's breath.
Monday, April 13, 2015
Comparing The Genomes Of The Leprosy Bacteria
EPFL scientists have compared for the first time the genomes of the two bacteria species that cause leprosy. The study shows how the two species evolved from a common ancestor 13.9 million years ago, and offers new insights into their biology that could lead to new treatments.
Wednesday, March 25, 2015
Lab-on-a-Chip to Study Single Cells
Scientists at EPFL have developed a new lab-on-a-chip technique to analyze single cells from entire population. The new method, which uses beads and microfluidics can change the way we study mixed populations of cells, such as those of tumors.
Monday, February 16, 2015
Rice Could Make Cholera Treatment More Effective
Current rehydration therapy for cholera could increase the toxicity of the cholera bacterium.
Friday, December 05, 2014
Graphene Nanoribbons for “Reading” DNA
One of the methods used for examining the molecules in a liquid consists in passing the fluid through a nano-sized hole so as to detect their passage.
Tuesday, November 19, 2013
Hundreds of Biochemical Analyses on a Single Device
Scientists at EPFL and the University of Geneva have developed a microfluidic device smaller than a domino that can simultaneously measure up to 768 biomolecular interactions.
Wednesday, September 26, 2012
Scientific News
Study Finds Brain Chemicals that Keep Wakefulness in Check
Researchers to develop new drugs that promote better sleep, or control hyperactivity in people with mania.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!