Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

HHMI’s Robert Lefkowitz Awarded 2012 Nobel Prize in Chemistry

Published: Thursday, October 11, 2012
Last Updated: Thursday, October 11, 2012
Bookmark and Share
Robert Lefkowitz and Brian K. Kobilka are the recipients of the 2012 Nobel Prize in Chemistry for studies of G-protein coupled receptors.

The Royal Swedish Academy of Sciences has announced that Robert J. Lefkowitz, a Howard Hughes Medical Institute (HHMI) investigator at Duke University, and Brian K. Kobilka of Stanford University School of Medicine are the recipients of the 2012 Nobel Prize in Chemistry for studies of G-protein coupled receptors.

According to the Academy, this year's Nobel Prize in Chemistry was awarded for discoveries that reveal the inner workings of an important family of such receptors: G-protein-coupled receptors.

For a long time, it remained a mystery how cells could sense their environment. Scientists knew that hormones such as adrenalin had powerful effects: increasing blood pressure and making the heart beat faster.

They suspected that cell surfaces contained some kind of recipient for hormones. But what these receptors actually consisted of and how they worked remained obscured for most of the 20th Century.

Cells in our body are constantly exposed to a variety of chemical signals-hormones, neurotransmitters, growth factors, and sometimes even drugs-that they need to interpret and translate into a response. This task is handled by receptors that dot cell membranes.

Lefkowitz, who became an HHMI investigator at Duke in 1976, essentially defined the field of receptor biology through his work with G protein-coupled receptors, the largest and most pervasive family of cell receptors.

A thousand or more of these receptors are known to exist throughout the body, playing critical roles in sight, smell, and taste, and in regulating heart rate, blood pressure, pain tolerance, glucose metabolism, and virtually all known physiological processes.

Surprisingly, Lefkowitz never fully intended to make research the focus of his career. As a child growing up in the Bronx, he read medical fiction and detective stories, and decided in third grade that he wanted to become a physician.

He went to medical school at Columbia University, finishing first in his class. But during a two-year fellowship at the National Institutes of Health from 1968-70, he got hooked on receptor biology, a field that was then in its infancy.

At that time, experiments in other laboratories had only suggested the presence of cell receptors, but no one had ever proved their existence.

Lefkowitz, however, was convinced they were real, and he set out to isolate them. Beginning with the β2-adrenergic receptor in 1982, Lefkowitz isolated eight of the nine subtypes of adrenergic receptors and determined their complete amino acid sequences.

The βadrenergic receptors are among the most common G protein-coupled receptors, regulating the body's fight-or-flight response by responding to epinephrine.

Lefkowitz also discovered two new families of proteins that desensitize G protein-coupled receptors-a finding that has helped scientists understand, in molecular terms, how receptors become tolerant to certain drugs.

The first is a novel family of enzymes called the G protein-coupled receptor kinases (GRKs) including the βadrenergic receptor kinase (βRK), and the second is a group of proteins called arrestins. Both protein families, he has shown, are widely distributed, and their actions are not limited to the β-adrenergic receptors.

Understanding the actions of arrestins and GRKs eventually may lead to new treatments for human diseases, including heart failure, Lefkowitz predicts. Recently his laboratory has discovered that the βarrestin/GRK system is actually bifunctional.

It serves as a signal transduction system by scaffolding various signaling systems such as MAP kinases or AKT to the receptors, even as it desensitizes G protein signaling.

Lefkowitz has found that it is possible to design drugs that, while serving as antagonists for G protein signaling, serve as agonists or stimulants of beneficial βarrestin-mediated signaling. Such "biased" ligands may represent an entirely novel class of therapeutic agents.

In addition to more than three decades of discoveries in the laboratory, Lefkowitz is widely recognized for his dedication to mentoring and his tireless devotion to his students. Over the years, he has trained several hundred graduate students and postdocs in his laboratory.

While acknowledging that there is no recipe for turning out successful researchers, Lefkowitz admits he is very much a "hands-on" mentor, one who enjoys daily interactions with those working in his laboratory.

In small group meetings held three or four times a week in his office, he discusses results and plots strategy with students working on related projects.

When it comes to his own research, Lefkowitz says he remains fascinated by the way it "continuously renews itself and always feels fresh. I come to work every day with a sense of great anticipation and curiosity about what new discoveries and insights will come our way. Every question that we can answer poses several new ones that seem even more interesting than the one we've just answered."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Monday, July 25, 2016
One-Drop-of-Blood Reveals a Patient’s Viral History
New technology developed by Howard Hughes Medical Institute researchers makes it possible to test for current and past infections with any known human virus by analyzing a single drop of a person's blood.
Tuesday, June 09, 2015
A Crisper View of DNA-Snipping Enzyme
HHMI scientists have created a portrait of a DNA-snipping protein called Cas9, a powerful research tool used in many labs for genome editing.
Saturday, February 08, 2014
Spontaneous Mutations Play a Key Role in Congenital Heart Disease
New research shows that about 10 percent of these defects are caused by genetic mutations that are absent in the parents of affected children.
Monday, May 13, 2013
A New View of Transcription Initiation
Reading the human genome.
Monday, March 04, 2013
Stash of Stem Cells Found in a Human Parasite
New findings were published online on February 20, 2013, in the journal Nature.
Tuesday, February 26, 2013
Search for Epigenetic Decoder in Brain Cells Leads Scientists to Rett Syndrome
New analysis suggests that MeCP2 recognizes 5hmC in the brain and facilitates activation of the genes.
Monday, December 31, 2012
Scientists Find Mechanism that Triggers Immune Responses to DNA
HHMI scientists have discovered the molecular pathway outside a cell’s nucleus in the cytosol.
Monday, December 24, 2012
Erin O’Shea Named Vice President and Chief Scientific Officer at HHMI
O’Shea to begin her new duties part-time in January 2013 and transition to full-time in July 2013.
Monday, December 03, 2012
Susan Desmond-Hellmann Elected as HHMI Trustee
Desmond-Hellmann becomes one of 11 Trustees of the Institute.
Thursday, November 08, 2012
Analysis of Stickleback Genome Sequence Catches Evolution in Action
Reuse of key genes is a common theme, as reported by scientists at the Howard Hughes Medical Institute.
Thursday, April 05, 2012
Autism Gene Screen Highlights Protein Network for Howard Hughes Medical Institute Scientists
Over the past decade, scientists have added many gene mutations to the list of potential risk factors for autism spectrum disorders -- but researchers still lack a definitive explanation of autism’s cause.
Thursday, April 05, 2012
Scientists Trace Origin of Recent Cholera Epidemic in Haiti
The finding supports the notion that the cholera bacteria fueling the outbreak arrived on the island via recent visitors.
Friday, December 10, 2010
Protein-Folding Game Taps Power of Worldwide Audience to Solve Difficult Puzzles
Extended efforts could pay off in the design of new proteins that help fight disease, sequester carbon, or clean up the environment.
Monday, August 09, 2010
New Tool Illuminates Connections Between Stem Cells and Cancer
HHMI researchers have a new tool to understand how cancers grow - and with it a new opportunity to identify novel cancer drugs.
Monday, February 22, 2010
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
BGI Sequences Gingko Tree, Revealing Large, Highly Repetitive Genome
Researchers at BGI have sequenced the more than 10-gigabase ginkgo genome to find a high number of repetitive sequences as well as a number of gene clusters that appear to be involved in defense mechanisms.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!