Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Collaboration between TAP Biosystems and UCL to Develop Biomimetic 3D Cancer Models

Published: Friday, October 12, 2012
Last Updated: Friday, October 12, 2012
Bookmark and Share
TAP Biosystems announced new collaboration to develop solid tumour tissue models using its RAFT 3D cell culture system for use in drug discovery applications.

The three way collaboration, between TAP Biosystems and researchers on two UCL sites at the Division of Surgery and Interventional Science, will focus on developing technology to generate advanced 3D cancer tissue models for use in research and drug discovery. Their aim is to use TAP’s RAFT™ (Real Architecture for 3D Tissue™) technology to reproduce solid tumour micro architecture, by seeding co-cultures of cancer cells, fibroblasts and endothelial cells into a collagen gel. With the correct conditions, fibroblasts aggregate around the cancer cells to form connective tissue, and the endothelial cells fuse to form lumens, producing angiogenic growth factor and rudimentary vasculature, so that the final co-culture has many of the features and behaviour of a solid tumour.

Dr Marilena Loizidou, Senior Lecturer, Division of Surgery and Interventional Science at
UCL explained:”Our ultimate aim is to engineer reproducible 3D tissues to test the efficacy of compounds and biologics to treat solid tumours in diseases such as breast, bowel and bladder cancer. By engineering these types of tissues, we’ll have a far reaching impact on translational research, as we could more readily tease out the mechanisms of why drugs do or don’t act effectively on tumours.”

Dr Umber Cheema, Research Fellow at the Division of Surgery and Interventional Science at UCL added: “When making 3D cancer tissues it is very difficult to do this in a controlled, reproducible way, and we need help making the tissue formation process consistent for pharma and biotech use. TAP Biosystems is a company that has a proven background, as well as a progressive vision. We believe utilising the RAFT platform is the best way to make our science relevant and are very pleased to be partnering with TAP on this project.”

Dr Rosemary Drake, CSO at TAP Biosystems said: “We are delighted to be extending our collaborative partnerships at UCL to include a new application of the RAFT process. We look forward to working together with Dr Marilena Loizidou and Dr Umber Cheema’s teams of experts to develop novel 3D human tumour models that reproduce the cells’ in vivo environment. Using this approach to create more realistic and complex models, should mean that data are more robust and relevant and drug screening becomes more efficient. This could result in significant cost savings, and, more importantly, may contribute to reducing the amount of pre-clinical animal studies required for testing new oncology therapies.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Merck and TAP Biosystems Finalists for “Best Collaboration Award”
Recognizing ambr250 as a breakthrough technology for process development.
Wednesday, October 08, 2014
TAP and Gallus Co-host Free Webinar
Explaining the benefits of using ambr15 microbioreactors for DoE.
Wednesday, October 01, 2014
New Webinars Explore Feed Strategy Challenges Using Mini Bioreactors
Detailing how to achieve consistent feeding regimes for reproducible scale-up.
Thursday, September 25, 2014
New Webinar on Mimicking Perfusion Culture Using Micro Bioreactors
Presents validation data for improving media screening and process optimization.
Friday, February 14, 2014
TAP Biosystems Presents New Data on 3D Cell Culture Research
Discussing the application of RAFT 3D models in oncology, toxicology and neuroscience cell-based screening programmes.
Monday, January 20, 2014
TAP Biosystems Partners with Life Technologies on Protein Expression Platform
The companies will collaborate to develop a cost-efficient, high throughput protein expression platform.
Tuesday, January 15, 2013
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!