Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Collaboration between TAP Biosystems and UCL to Develop Biomimetic 3D Cancer Models

Published: Friday, October 12, 2012
Last Updated: Friday, October 12, 2012
Bookmark and Share
TAP Biosystems announced new collaboration to develop solid tumour tissue models using its RAFT 3D cell culture system for use in drug discovery applications.

The three way collaboration, between TAP Biosystems and researchers on two UCL sites at the Division of Surgery and Interventional Science, will focus on developing technology to generate advanced 3D cancer tissue models for use in research and drug discovery. Their aim is to use TAP’s RAFT™ (Real Architecture for 3D Tissue™) technology to reproduce solid tumour micro architecture, by seeding co-cultures of cancer cells, fibroblasts and endothelial cells into a collagen gel. With the correct conditions, fibroblasts aggregate around the cancer cells to form connective tissue, and the endothelial cells fuse to form lumens, producing angiogenic growth factor and rudimentary vasculature, so that the final co-culture has many of the features and behaviour of a solid tumour.

Dr Marilena Loizidou, Senior Lecturer, Division of Surgery and Interventional Science at
UCL explained:”Our ultimate aim is to engineer reproducible 3D tissues to test the efficacy of compounds and biologics to treat solid tumours in diseases such as breast, bowel and bladder cancer. By engineering these types of tissues, we’ll have a far reaching impact on translational research, as we could more readily tease out the mechanisms of why drugs do or don’t act effectively on tumours.”

Dr Umber Cheema, Research Fellow at the Division of Surgery and Interventional Science at UCL added: “When making 3D cancer tissues it is very difficult to do this in a controlled, reproducible way, and we need help making the tissue formation process consistent for pharma and biotech use. TAP Biosystems is a company that has a proven background, as well as a progressive vision. We believe utilising the RAFT platform is the best way to make our science relevant and are very pleased to be partnering with TAP on this project.”

Dr Rosemary Drake, CSO at TAP Biosystems said: “We are delighted to be extending our collaborative partnerships at UCL to include a new application of the RAFT process. We look forward to working together with Dr Marilena Loizidou and Dr Umber Cheema’s teams of experts to develop novel 3D human tumour models that reproduce the cells’ in vivo environment. Using this approach to create more realistic and complex models, should mean that data are more robust and relevant and drug screening becomes more efficient. This could result in significant cost savings, and, more importantly, may contribute to reducing the amount of pre-clinical animal studies required for testing new oncology therapies.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Merck and TAP Biosystems Finalists for “Best Collaboration Award”
Recognizing ambr250 as a breakthrough technology for process development.
Wednesday, October 08, 2014
TAP and Gallus Co-host Free Webinar
Explaining the benefits of using ambr15 microbioreactors for DoE.
Wednesday, October 01, 2014
New Webinars Explore Feed Strategy Challenges Using Mini Bioreactors
Detailing how to achieve consistent feeding regimes for reproducible scale-up.
Thursday, September 25, 2014
New Webinar on Mimicking Perfusion Culture Using Micro Bioreactors
Presents validation data for improving media screening and process optimization.
Friday, February 14, 2014
TAP Biosystems Presents New Data on 3D Cell Culture Research
Discussing the application of RAFT 3D models in oncology, toxicology and neuroscience cell-based screening programmes.
Monday, January 20, 2014
TAP Biosystems Partners with Life Technologies on Protein Expression Platform
The companies will collaborate to develop a cost-efficient, high throughput protein expression platform.
Tuesday, January 15, 2013
Scientific News
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos