Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nobel Prize Winner Yamanaka Remains at Forefront of Fast-Moving Stem Cell Field

Published: Friday, October 12, 2012
Last Updated: Friday, October 12, 2012
Bookmark and Share
Shinya Yamanaka, MD, PhD, named winner of the 2012 Nobel Prize for Physiology or Medicine, said he was doing some housecleaning when the call came in, and was “very surprised.”

But at UCSF, where Yamanaka joined the faculty in 2007, splitting his time between Kyoto University and the UCSF-affiliated Gladstone Institutes, his winning the Nobel Prize was considered virtually inevitable. The only surprise, colleagues say, was that the honor came so quickly.

Often the Nobel Committee waits decades before awarding the prize to make sure the discovery stands the test of time. It’s rare for a scientist’s influence on scientific thought and experimentation to spread as fast as it did in this case.

Yamanaka discovered keys to the developmental destiny of cells, and how these keys can be used to manipulate cell fate in ways that offer hope to scientists who seek new methods of providing tissues for organ transplantation and for other medical applications. His seminal paper was published in 2006, and there is an expectation that the techniques he developed will lead to clinical trials for macular degeneration as early as next year.

“It’s a great day for the Gladstone, and a great day for UCSF,” said Deepak Srivastava, MD, director of the Gladstone Institute of Cardiovascular Disease and a UCSF professor in the departments of pediatrics and biochemistry and biophysics.

“I’m a little surprised it happened this year,” Srivastava said. “I thought it would happen in the next five to 10 years.”

Even without considering the clinical potential, the implications of Yamanaka’s work for understanding basic biology are deserving of recognition, Srivastava said.

“The award is carefully worded,” he noted. “The fundamental, basic discovery that we can alter cell fates is really what this prize is about; it’s not so much about stem cells, or even about regenerative medicine. It’s about the discovery that we can control the fate of the cell by manipulating DNA without changing the genetic code.

“The ability to control cell fate, we hope, will allow us in the future to use the technology for regenerative medicine and disease modeling to drive discovery,” he said.

Srivastava — who himself is using strategies that stem from Yamanaka’s earlier discoveries to develop heart muscle from adult cells — is indeed optimistic about the medical possibilities. At a press briefing on Monday, he said he expected that Yamanaka’s conceptual advance within a couple of years will lead researchers to be able to convert a skin cell into virtually any other type of cell in the body. He forecast that in the next five to 10 years, the technology developed by Yamanaka will be leveraged in efforts to understand and better treat many human diseases.

Allan Basbaum, PhD, chair of the UCSF Department of Anatomy, where Yamanaka is a professor, said he also was surprised that Yamanaka won so quickly. However, Basbaum said, “he revolutionized a scientific field,” and to be named a Nobel laureate “that’s the way it should be.”

Yamanaka greatly advanced the field of stem cell research by developing a way to turn back the development of adult skin cells, making them more similar to embryonic stem cells in their potential to become any type of cell that populates tissues throughout the body.

Yamanaka accomplished this — first with mouse cells and later with human cells — by using just four molecules that control key genes in embryonic stem cells.

These induced pluripotent stem cells, or iPS cells, hold great promise for research. Pluripotency refers to the capacity of a cell to become nearly any type of cell in the body — a characteristic of the fertilized egg and of embryonic stem cells, but not one It was thought possible to coax from already mature cells.

Unlike embryonic stem cells, iPS cells can be developed using cells from adults who already have a disease. Already iPS cells are being reprogrammed in the lab to learn more about the development of human diseases, using human cells rather than animal cells and animal disease models.

In the development of cell therapies to regenerate tissue, iPS cells can be derived from the patient’s own tissue, allowing treatment to be better tailored to the individual patient.

The experiments that eventually succeeded for Yamanaka were simple and easily reproducible, which led to the methods he developed to be quickly adopted and built upon. Before Yamanaka, the ranks of those who sought to manipulate cell fate without changing the genetic code was smaller, and the field advanced more slowly.

Yamanaka said he was very inspired to pursue what others said was impossible in part by the work a half-century earlier by the scientist with whom he shares the Nobel Prize – John Gurdon, PhD, professor of cell biology at Cambridge University's Magdalene College and founder of the Gurdon Institute in Cambridge, England.

Development had always been viewed as a one-way street. As organisms develop, cells become increasingly specialized. That’s why it was a surprise when Gurdon in the 1950s showed that transferring the nucleus of an adult cell – complete with DNA and the encoded genetic program – into an egg could generate embryonic cells. He showed that the genetic program of an adult cell could be “reset” to its embryonic state. Gurdon first accomplished this working with frogs. This line of inquiry eventually led to the cloning of Dolly the Sheep in 1997.

Asked what he is working on now, Yamanaka said: “We have many projects, but I would say the most important project for us is to establish iPS cell stocks, or a bank.” In addition Yamanaka said, the Center for iPS Cell Research and Application in Kyoto where he works has a good manufacturing practice (GMP) facility. “We are hoping to establish the very first GMP-grade clinical cell lines by next year,” he said.

Despite the advances to date, Yamanaka said there are many details that must be learned about the biological mechanisms that guide the reprogramming of cells.

“We are doing our best, but there are still many unknowns,” he said. “It’s still right now a black box.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Tuesday, July 21, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Tuesday, June 23, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Researchers Reverse Bacterial Resistance to Antibiotics
Evidence continues to surface that supports the premise that antibiotics which have been out of use could still be effective in treating drug-resistant bacteria.
Friday, May 08, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
Investigating the Vape
Expert independent review concludes that e-cigarettes have potential to help smokers quit.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Researchers Discover Synthesis of a New Nanomaterial
Interdisciplinary team creates biocomposite for first time using physiological conditions.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!