Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Nobel Prize Winner Yamanaka Remains at Forefront of Fast-Moving Stem Cell Field

Published: Friday, October 12, 2012
Last Updated: Friday, October 12, 2012
Bookmark and Share
Shinya Yamanaka, MD, PhD, named winner of the 2012 Nobel Prize for Physiology or Medicine, said he was doing some housecleaning when the call came in, and was “very surprised.”

But at UCSF, where Yamanaka joined the faculty in 2007, splitting his time between Kyoto University and the UCSF-affiliated Gladstone Institutes, his winning the Nobel Prize was considered virtually inevitable. The only surprise, colleagues say, was that the honor came so quickly.

Often the Nobel Committee waits decades before awarding the prize to make sure the discovery stands the test of time. It’s rare for a scientist’s influence on scientific thought and experimentation to spread as fast as it did in this case.

Yamanaka discovered keys to the developmental destiny of cells, and how these keys can be used to manipulate cell fate in ways that offer hope to scientists who seek new methods of providing tissues for organ transplantation and for other medical applications. His seminal paper was published in 2006, and there is an expectation that the techniques he developed will lead to clinical trials for macular degeneration as early as next year.

“It’s a great day for the Gladstone, and a great day for UCSF,” said Deepak Srivastava, MD, director of the Gladstone Institute of Cardiovascular Disease and a UCSF professor in the departments of pediatrics and biochemistry and biophysics.

“I’m a little surprised it happened this year,” Srivastava said. “I thought it would happen in the next five to 10 years.”

Even without considering the clinical potential, the implications of Yamanaka’s work for understanding basic biology are deserving of recognition, Srivastava said.

“The award is carefully worded,” he noted. “The fundamental, basic discovery that we can alter cell fates is really what this prize is about; it’s not so much about stem cells, or even about regenerative medicine. It’s about the discovery that we can control the fate of the cell by manipulating DNA without changing the genetic code.

“The ability to control cell fate, we hope, will allow us in the future to use the technology for regenerative medicine and disease modeling to drive discovery,” he said.

Srivastava — who himself is using strategies that stem from Yamanaka’s earlier discoveries to develop heart muscle from adult cells — is indeed optimistic about the medical possibilities. At a press briefing on Monday, he said he expected that Yamanaka’s conceptual advance within a couple of years will lead researchers to be able to convert a skin cell into virtually any other type of cell in the body. He forecast that in the next five to 10 years, the technology developed by Yamanaka will be leveraged in efforts to understand and better treat many human diseases.

Allan Basbaum, PhD, chair of the UCSF Department of Anatomy, where Yamanaka is a professor, said he also was surprised that Yamanaka won so quickly. However, Basbaum said, “he revolutionized a scientific field,” and to be named a Nobel laureate “that’s the way it should be.”

Yamanaka greatly advanced the field of stem cell research by developing a way to turn back the development of adult skin cells, making them more similar to embryonic stem cells in their potential to become any type of cell that populates tissues throughout the body.

Yamanaka accomplished this — first with mouse cells and later with human cells — by using just four molecules that control key genes in embryonic stem cells.

These induced pluripotent stem cells, or iPS cells, hold great promise for research. Pluripotency refers to the capacity of a cell to become nearly any type of cell in the body — a characteristic of the fertilized egg and of embryonic stem cells, but not one It was thought possible to coax from already mature cells.

Unlike embryonic stem cells, iPS cells can be developed using cells from adults who already have a disease. Already iPS cells are being reprogrammed in the lab to learn more about the development of human diseases, using human cells rather than animal cells and animal disease models.

In the development of cell therapies to regenerate tissue, iPS cells can be derived from the patient’s own tissue, allowing treatment to be better tailored to the individual patient.

The experiments that eventually succeeded for Yamanaka were simple and easily reproducible, which led to the methods he developed to be quickly adopted and built upon. Before Yamanaka, the ranks of those who sought to manipulate cell fate without changing the genetic code was smaller, and the field advanced more slowly.

Yamanaka said he was very inspired to pursue what others said was impossible in part by the work a half-century earlier by the scientist with whom he shares the Nobel Prize – John Gurdon, PhD, professor of cell biology at Cambridge University's Magdalene College and founder of the Gurdon Institute in Cambridge, England.

Development had always been viewed as a one-way street. As organisms develop, cells become increasingly specialized. That’s why it was a surprise when Gurdon in the 1950s showed that transferring the nucleus of an adult cell – complete with DNA and the encoded genetic program – into an egg could generate embryonic cells. He showed that the genetic program of an adult cell could be “reset” to its embryonic state. Gurdon first accomplished this working with frogs. This line of inquiry eventually led to the cloning of Dolly the Sheep in 1997.

Asked what he is working on now, Yamanaka said: “We have many projects, but I would say the most important project for us is to establish iPS cell stocks, or a bank.” In addition Yamanaka said, the Center for iPS Cell Research and Application in Kyoto where he works has a good manufacturing practice (GMP) facility. “We are hoping to establish the very first GMP-grade clinical cell lines by next year,” he said.

Despite the advances to date, Yamanaka said there are many details that must be learned about the biological mechanisms that guide the reprogramming of cells.

“We are doing our best, but there are still many unknowns,” he said. “It’s still right now a black box.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Some 3-D Printed Objects Are Toxic
Researchers at the University of California, Riverside have found parts produced by some commercial 3-D printers are toxic to certain fish embryos.
Monday, November 09, 2015
Artificial Kidney Research Gets A Boost
Development of a surgically implantable, artificial kidney — a promising alternative to kidney transplantation or dialysis for people with end-stage kidney disease — has received a $6 million boost.
Monday, November 09, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Sustaining Our Salad
Improving lettuce crops is the aim of a new, $4.5 million grant, awarded to University of California, Davis, researchers by the U.S. Department of Agriculture's National Institute of Food and Agriculture.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Influenza A Viruses More Likely To Emerge In East Asia Than North America
Novel strains of influenza A are more likely to emerge in East Asia than in North America, according to a global analysis by the One Health Institute at the UC Davis School of Veterinary Medicine and EcoHealth Alliance.
Wednesday, September 30, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Crunching Numbers to Combat Cancer
UCSF receives $5 million to integrate data from cancer research models.
Wednesday, September 16, 2015
Virus In Cattle Linked To Human Breast Cancer
A new study by UC Berkeley researchers establishes for the first time a link between infection with the bovine leukemia virus and human breast cancer.
Wednesday, September 16, 2015
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos