Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Transplanted Neural Stem Cells Produced Myelin

Published: Friday, October 12, 2012
Last Updated: Friday, October 12, 2012
Bookmark and Share
A Phase I clinical trial led by investigators from the University of California, San Francisco (UCSF) and sponsored by Stem Cells Inc., showed that neural stem cells successfully engrafted into the brains of patients and appear to have produced myelin.

The study, published in Wednesday's issue of Science Translational Medicine, also demonstrated that the neural stem cells were safe in the patients’ brains one year post transplant.

The results of the investigation, designed to test safety and preliminary efficacy, are encouraging, said principal investigator David H. Rowitch, MD, PhD, a professor of pediatrics and neurological surgery at UCSF, chief of neonatology at UCSF Benioff Children’s Hospital and a Howard Hughes Medical Institute Investigator. “For the first time, we have evidence that transplanted neural stem cells are able to produce new myelin in patients with a severe myelination disease,” said Nalin Gupta, MD, PhD, associate professor of neurological surgery and pediatrics and chief of pediatric neurological surgery at UCSF Benioff Children's Hospital, and co-principal investigator of the PMD clinical trial.

“We also saw modest gains in neurological function, and while these can’t necessarily be attributed to the intervention because this was an uncontrolled trial with a small number of patients, the findings represent an important first step that strongly supports further testing of this approach as a means to treat the fundamental pathology in the brain of these patients.”

The study, one of the first neural stem cell trials ever conducted in the United States, is emblematic of UCSF’s pioneering role in the stem cell field. In 1981, Gail Martin, PhD, professor of anatomy, co-discovered embryonic stem cells in mice. In 2001, Roger Pedersen, PhD, professor emeritus of obstetrics, gynecology and reproductive sciences, derived two of the first human embryonic stem cell lines. On Monday, Shinya Yamanaka, MD, PhD, of the UCSF-affiliated Gladstone Institutes and Kyoto University, received the Nobel Prize in Physiology or Medicine for his discovery that adult cells can be reprogrammed to behave like embryonic stem cells.

Landmark Study in Stem Cell Field

In the trial, human neural stem cells developed by Stem Cells, Inc., of Newark, California, were injected directly into the brains of four young children with an early-onset, fatal form of a condition known as Pelizaeus-Merzbacher disease (PMD).

In PMD, an inherited genetic defect prevents brain cells called oligodendrocytes from making myelin, a fatty material that insulates white matter which serves as a conduit for nervous impulses throughout the brain. Without myelin sheathing, white matter tracts short-circuit like bare electrical wires and are unable to correctly propagate nerve signals, resulting in neurological dysfunction and neurodegeneration. Patients with early-onset PMD cannot walk or talk, often have trouble breathing and undergo progressive neurological deterioration leading to death between ages 10 and 15.The disease usually occurs in males.

Multiple sclerosis and certain forms of cerebral palsy also involve damage to oligodendrocytes and subsequent demyelination.

Before and after the transplant procedures in the children with PMD, which were conducted between 2010-2011, the patients were given standard neurological examinations and developmental assessments, and underwent magnetic resonance imaging (MRI). “MRI is the most stringent non-invasive method we have of assessing myelin formation,” said Rowitch.

The investigators found evidence that the stem cells had successfully engrafted, receiving blood and nutrients from the surrounding tissue and integrating into the brain, a process that Rowitch likened to “a plant taking root.”

This finding was particularly significant, he said, because the cells were not the patients’ own stem cells. “It would have been just as likely to expect that the patients would have rejected them,” he said.
The investigators also found indirect evidence that the stem cells had become oligodendrocytes and were producing myelin. “There is no non-invasive way to test this definitively,” cautioned Rowitch, “but our MRI findings suggest myelination in the regions that have been transplanted.”

Once transplanted and engrafted, neural stem cells have the potential to differentiate into a number of different brain cell types, depending on the area of the brain into which they are inserted. The sites chosen for the Phase I study were known from animal studies to be the most likely to result in the formation of oligodendrocytes.

In an animal study by another team of investigators, at Oregon Health & Science University's Papé Family Pediatric Research Institute, published in the same issue of Science Translational Medicine, Stem Cells Inc’s neural stem cells were injected into mouse models and became oligodendrocytes and formed myelin. “The animal study is consistent with the MRI findings from the clinical trial and further supports the possibility of donor-derived myelination in human patients,” said Rowitch.

“This is a landmark study for the field,” said Arnold R. Kriegstein, MD, PhD, director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF. “Without such studies in human patients, we won’t really know how transplanted cells behave – whether they disperse or migrate, whether they engraft or degenerate and die, whether immune-suppressing regimens really work or not. It’s only through these investigations that we will be able to refine the necessary procedures and technologies and make progress toward cell-based therapies for this disease and related disorders.”

The Eli and Edythe Broad Center of Regeneration Medicine, one of the premier stem cell programs in the world, is focused on understanding the ways stem cells function, with the goal of developing therapies to treat a broad range of diseases, including cardiovascular disease, diabetes and neurological diseases.

Co-investigators of the clinical team are Jonathan Strober, MD, director of Clinical Services for Child Neurology and Director of the Muscular Dystrophy Clinic at UCSF Children's Hospital, and Nalin Gupta, MD, PhD, chief of Pediatric Neurological Surgery at UCSF Benioff Children's Hospital.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!