Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Large International Study Finds 21 Genes Tied to Cholesterol Levels

Published: Tuesday, October 16, 2012
Last Updated: Tuesday, October 16, 2012
Bookmark and Share
In the largest-ever genetic study of cholesterol and other blood lipids, an international consortium has identified 21 new gene variants associated with lipid levels.

The findings expand the list of potential drug targets for lipid-related cardiovascular disease, a leading global cause of death and disability.

Gene analysis tool invented by CHOP scientist used in study

The International IBC Lipid Genetics Consortium used the Cardiochip, a gene analysis tool invented by Brendan J. Keating, PhD, a scientist at the Center for Applied Genomics at The Children’s Hospital of Philadelphia. Since its creation in 2006, researchers have used the Cardiochip to pinpoint gene variants in dozens of studies. The device contains approximately 50,000 DNA markers across 2000 genes implicated in cardiovascular disease.

Keating and Fotios Drenos, PhD, of University College London, are senior authors of the current study, published today in the American Journal of Human Genetics.

Comprising over 180 researchers worldwide, the consortium analyzed genetic data from over 90,000 individuals of European ancestry. First the researchers used the Cardiochip in a discovery dataset of over 65,000 individuals from 32 previous studies. They then sought independent replication in other studies covering over 25,000 individuals, as well as in a previously reported study of 100,000 individuals.

21 genes related to cholesterol levels — some gene signals appear to be gender-specific

From this meta-analysis, the consortium identified 21 novel genes associated with levels of low-density lipoproteins (LDL, or “bad cholesterol”), high-density lipoproteins (HDL, “good cholesterol”), total cholesterol (TC), and triglycerides (TG), as well as verifying 49 known signals. The researchers also found that some of the strongest signals appeared to be gender-specific—some variants were more likely to appear in men, others in women.

Largest international study to date to study lipid traits

Keating said, “To date, this is the largest number of DNA samples ever used in a study for lipid traits, it clearly shows the value of using broad-ranging global scientific collaborations to yield new gene signals.”

Drenos added, “While each of the genetic variants has a small effect on the specific lipid trait, their cumulative effect can significantly add up to put people at risk for disease.” He continued, “This study underscores how international sharing of resources and datasets paves the way for robust, continuing discoveries of new and unexpected information from human genetic studies.”

Keating and Drenos coordinated efforts among four main data coordinating sites: the Center for Applied Genomics at The Children’s Hospital of Philadelphia; the Institute of Cardiovascular Sciences at University College London; AMC, Amsterdam; and the Department of Cardiology at the University Medical Center, Utrecht.

Future research to identify which gene loci directly cause disease, support development of new drugs
The consortium is following this published work with a project to identify which of the loci reported directly cause disease, and how this knowledge can help in the development of novel drugs. The consortium will also devote its significant pooled resources to identifying interactions among genetic polymorphisms (single-base variations in DNA) and biological markers of downstream cardiovascular disease.

Lead author Folkert Asselbergs, MD, PhD, of University Medical Center, Utrecht, added, “Next to already established drug targets such as the LDL receptor and PCSK9, the current study identified 21 potential new targets for drug development that may be beneficial for the treatment of dyslipidaemia in the future. Our team of researchers are now initiating additional studies to investigate the impact of the found genes on cardiovascular disease.”

Funding for the study

More than 30 organizations and agencies funded this study, including the U.K. Medical Research Council, the British Heart Foundation, the National Institutes of Health and the Wellcome Trust. In addition to his position at The Children’s Hospital of Philadelphia, Keating also is on the faculty of the Perelman School of Medicine at the University of Pennsylvania.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Therapy for Rare Bleeding Disorder
CHOP researcher leads study of factor VII deficiency in dog model; shows long-term correction, safety and efficacy.
Tuesday, January 26, 2016
Climate Change May Bring More Kidney Stones
CHOP-led research finds link between hotter days, kidney stones in U.S. adults and children.
Friday, July 11, 2014
Leukemia Treatment Using Child’s Own Re-engineered Immune Cells
Engineered immune cells produce complete response in child with an aggressive pediatric leukemia.
Thursday, December 13, 2012
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!