Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Discovery of Biological Energy-Sensing Switch Could Have Broad Implications for Biology and Medicine

Published: Tuesday, October 23, 2012
Last Updated: Tuesday, October 23, 2012
Bookmark and Share
Biochemists at The Scripps Research Institute (TSRI) have discovered a genetic sequence that can alter its host gene’s activity in response to cellular energy levels.

The scientists have found this particular energy-sensing switch in bacterial genes, which could make it a target for a powerful new class of antibiotics. If similar energy-sensing switches are also identified for human genes, they may be useful for treating metabolism-related disorders such as type 2 diabetes and heart disease.

“This discovery adds a new dimension to our understanding of how cells sense and manage their energy levels, which is one of the most important processes in biology,” said the study’s senior author, Martha J. Fedor, a professor the departments of Chemical Physiology and Molecular Biology and a member of the Skaggs Institute for Chemical Biology at TSRI.

The findings are described online ahead of print on October 21, 2012, in the journal Nature Chemical Biology.

A Fuel Sensor

This type of gene-switching sequence is known as a riboswitch because it appears on the strand of ribonucleic acid (RNA) that is first transcribed from a gene’s DNA. Unlike other known riboswitches, which have relatively limited functions, this one acts as a sensor for the basic molecular fuel that powers all living cells and controls many genes.

The newly discovered riboswitch detects a small molecule known as adenosine triphosphate (ATP), the standard unit of chemical energy in all known organisms on our planet. Scientists had thought that cells use only large and relatively complex proteins to sense these all-important energy molecules and adjust cell activities accordingly. No one had found ATP sensors among riboswitches, which can alter cell activity at a more fundamental level—usually by interrupting a gene’s transcription from DNA.

Moreover, previously described riboswitches are relatively simple feedback sensors that affect narrow metabolic pathways. Most of them merely sense and adjust the expression rate of their own host gene. “This is the first riboswitch that is known to be involved in global metabolic regulation,” said Fedor.

In recent years, the Fedor team had found hints that such a riboswitch could exist. Many RNA sequences with possible riboswitch activity had never been characterized, and several riboswitches in bacteria sense molecules that are closely related to ATP. Fedor and a graduate student in her laboratory, Peter Y. Watson, therefore set out to find bacterial riboswitches that could indeed sense ATP.

Caught in the Act

The task was more challenging than it might have seemed. Watson could not simply expose suspected riboswitches to ATP and see which ones stuck best to the energy molecules. ATP is present in high concentrations in cells, and its interactions with its known protein sensors are necessarily fleeting, low-affinity affairs. Interactions with a riboswitch would be expected to look the same. “Such interactions are really too weak to be detected using traditional methods,” Watson said. But he found evidence that an RNA interaction with an ATP-like molecule would occur in a way that allows the brief coupling to be caught in the act—using a burst of ultraviolet radiation, which can create a strong chemical crosslink between two molecules.

In this way, he discovered a stretch of apparent ATP-binding RNA known as the ydaO motif. Watson performed structure-mapping analyses of ydaO to confirm that it binds to ATP and to determine precisely where it binds. Attaching ydaO to a “reporter” gene, he found that in bacterial cells, the reporter gene’s expression level stayed low when ATP levels were normal and rose sharply when ATP levels dropped—as would be expected if ydaO is really an ATP-sensing riboswitch. Even in unaltered cells of a test bacterium, B. subtilis, levels of the genes that normally contain the ydaO motif rose and fell in the same way in response to changing ATP levels.

The ydaO motif occurs in the large subset of bacteria known as gram-positive bacteria. Across these bacterial species, it has been found, to date, on 580 separate genes. “These ydaO-regulated genes encode proteins that have a wide variety of functions, from cell wall metabolism to amino acid transport,” Watson said. “It makes sense that a riboswitch in control of such disparate processes would be responding to a central metabolite such as ATP.”

New Possibilities

The finding has basic scientific importance because it is the first known example of a riboswitch that binds ATP; it is also the first known riboswitch that has such broad regulatory functions. “It opens up the possibility that RNA switches are involved in the general regulation of metabolism,” said Fedor.

The fact that ydaO motifs serve as “off-switches” for key bacterial genes also makes them a potential target for new antibiotics. “Hitting these riboswitches with a small-molecule, ATP-mimicking drug so that they can’t turn on genes that promote bacterial growth and survival could be a viable approach,” said Fedor.

Her laboratory will now search for other ATP-sensing riboswitches in bacteria and in higher organisms, including humans. A human ATP-sensing riboswitch, if targeted appropriately by drugs, might be able to alter cell activity in ways that help treat common metabolic disorders. Type 2 diabetes, which presently affects several hundred million people worldwide, is known to feature the improper regulation of ATP levels in cells.

Funding for the study, “The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis,” was provided by the Skaggs Institute for Chemical Biology at TSRI.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Friday, October 02, 2015
Key Morphine Regulator Identified
The findings could lead to less addictive pain medications.
Thursday, September 24, 2015
$6 Million Awarded to Develop Alternative HIV/AIDS Vaccine
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded up to nearly $6 million from the Bill & Melinda Gates Foundation to develop a revolutionary HIV/AIDS alternative vaccine that has demonstrated great potential in animal models.
Thursday, September 24, 2015
Novel Role of Mitochondria in Immune Function Identified
Scientists at The Scripps Research Institute (TSRI) have discovered a new role for an enzyme involved in cell death.
Monday, September 21, 2015
Scientists Make Strides in Therapy Preventing Addiction Relapse
Single Injection of Drug Candidate Prevents Meth Relapse in Animal Models.
Thursday, August 06, 2015
New Antibody Weapons Against Marburg Virus
A study has identified new immune molecules that protect against deadly Marburg virus, a relative of Ebola virus.
Tuesday, June 30, 2015
Team Led by TSRI Scientists Shows AIDS Vaccine Candidate Successfully ‘Primes’ Immune System
New research shows that an experimental vaccine candidate can stimulate immune activity necessary to prevent HIV infection.
Thursday, June 25, 2015
New Details of Potential Alzheimer’s Treatment Uncovered
Scientists from Florida’s Scripps Resarch Institute have uncovered suprising new details of potential Alzheimer’s treatment.
Wednesday, April 29, 2015
Search for Cancer Drug Candidates
Scripps Florida scientists awarded $1.2 million to find drug candidates that could treat a wide range of cancers.
Friday, April 10, 2015
Scripps Florida Scientists Win $1.5 Million Grant to Develop New Cancer Drugs
Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been awarded a $1.5 million grant from the National Institutes of Health (NIH) to develop drug candidates that could treat cancer and neurodegenerative disease.
Tuesday, March 24, 2015
Day-Night Cycles Linked to Mutations
TSRI scientists show that proteins critical in day-night cycles also protect cells from mutations.
Friday, March 13, 2015
More DNA & Extra Copies of Disease Gene in Alzheimer’s Brain Cells
Scientists at The Scripps Research Institute (TSRI) have found diverse genomic changes in single neurons from the brains of Alzheimer’s patients, pointing to an unexpected factor that may underpin the most common form of the disease.
Tuesday, February 24, 2015
Possible Neuron Killing Mechanism Behind Alzheimer’s and Parkinson’s Diseases Discovered
$1.4 million grant will enable team to follow up with search for drug candidates.
Tuesday, February 17, 2015
Microbes Prevent Malnutrition in Fruit Flies—and Maybe Humans, Too
Study shows that microbes play a critical role in nutritional disorders.
Friday, February 13, 2015
New Targets and Test to Develop Treatments for Memory Disorders
The study focuses on kinesin, a molecular motor protein that plays a role in the transport of other proteins throughout a cell.
Thursday, November 13, 2014
Scientific News
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos