Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Cracking the Epigenetic Code

Published: Thursday, October 25, 2012
Last Updated: Thursday, October 25, 2012
Bookmark and Share
A team of researchers is one step closer to better understanding how organisms function after discovering how epigenetic information is transmitted from one generation of cells to the next.

Lead researcher, Dr David Tremethick from The John Curtin School of Medical Research, said developing a better understanding of these epigenetic processes has significant potential implications for human health, in particular the treatment and prevention of diseases such as cancer.
The findings have been published in a new paper on the Nature Structural & Molecular Biology website today.

Epigenetics is the new frontier of genetic science. Epigenetic mechanisms go beyond DNA-stored information to provide an additional layer of information that controls when and where genes are expressed. It determines which fraction of the 20,000 genes that make up the human genome come into play to ensure the right genes are expressed in the correct cell type. This epigenetic information must be passed down through generations or ‘inherited’ in order for cells to function properly throughout our lives.

“We know cells are regenerating all the time and that epigenetic information must therefore be continually restored, the question is how this actually happens,” Dr Tremethick said.

“Our study focused on this important unanswered question by investigating how epigenetic information is restored following the cellular division of stem cells, which is essential for their renewal.

“Using mouse stem cells as a model system we found that the inheritance of epigenetic information, how information is passed along, was much more dynamic and unstable than we expected.

“From a health perspective, this has both positive and negative consequences. On the one hand, this instability opens up the possibility of information being corrupted as it is passed from cell to cell, causing disease. On the other, it points to the potential of one day being able to intervene in the process to correct corrupted information or stop it being passed on to another generation.

“The next step is to understand how this epigenomic information is naturally altered to allow the proper transition from a stem cell to a lineage-committed cell that occurs during human embryo development. This, in turn, will allow a better understanding of how this inheritance process goes wrong in diseases such as cancer.”

Dr Tremethick said the latest breakthroughs in technology in sequencing DNA has allowed a revolution in the field of epigenetics, in which the John Curtin School of Medical Research has become a major international player.

“We look forward to achieving more positive results from our research program and contributing to global advances in this cutting-edge field of epigenetics,” he said.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
ALS Study Reveals Role of RNA-Binding Proteins
The findings are a significant step forward in validating RNA-based therapy as a treatment for ALS.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Nanomedicine for Breast Cancer Treatment
Using nanoparticles measuring only billionths of a meter in size, doctors are able to deliver drug molecules directly to the affected tissue.
Clamping Down on Biomolecules
Physicists have developed a novel nanotool that provides a means of characterizing the mechanical properties of biomolecules.
MRSA Uses Decoys to Evade a Last-Resort Antibiotic
Researchers at Imperial College London have discovered that MRSA releases decoy molecules that allow them to escape being killed by the antibiotic.
Gene Therapy Going Global with Portable Device
Portable 'gene therapy in a box' could make future cancer and HIV cures affordable in developing countries.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos