Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH-Funded Research Provides New Clues on How ApoE4 Affects Alzheimer's Risk

Published: Tuesday, October 30, 2012
Last Updated: Tuesday, October 30, 2012
Bookmark and Share
Researchers found that ApoE4 triggers an inflammatory reaction that weakens the blood-brain barrier.

Common variants of the ApoE gene are strongly associated with the risk of developing late-onset Alzheimer's disease, but the gene's role in the disease has been unclear.

Now, researchers funded by the National Institutes of Health have found that in mice, having the most risky variant of ApoE damages the blood vessels that feed the brain.

The researchers found that the high-risk variant, ApoE4, triggers an inflammatory reaction that weakens the blood-brain barrier, a network of cells and other components that lines brain's brain vessels.

Normally, this barrier allows nutrients into the brain and keeps harmful substances out.

The study appears in Nature, and was led by Berislav Zlokovic, M.D., Ph.D., director of the Center for Neurodegeneration and Regeneration at the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles.

"Understanding the role of ApoE4 in Alzheimer's disease may be one of the most important avenues to a new therapy," Dr. Zlokovic said. "Our study shows that ApoE4 triggers a cascade of events that damages the brain's vascular system," he said, referring to the system of blood vessels that supply the brain.

The ApoE gene encodes a protein that helps regulate the levels and distribution of cholesterol and other lipids in the body. The gene exists in three varieties.

ApoE2 is thought to play a protective role against both Alzheimer's and heart disease, ApoE3 is believed to be neutral, and ApoE4 confers a higher risk for both conditions.

Outside the brain, the ApoE4 protein appears to be less effective than other versions at clearing away cholesterol; however, inside the brain, exactly how ApoE4 contributes to Alzheimer's disease has been a mystery.

Dr. Zlokovic and his team studied several lines of genetically engineered mice, including one that lacks the ApoE gene and three other lines that produce only human ApoE2, ApoE3 or ApoE4. Mice normally have only a single version of ApoE.

The researchers found that mice whose bodies made only ApoE4, or made no ApoE at all, had a leaky blood-brain barrier. With the barrier compromised, harmful proteins in the blood made their way into the mice's brains, and after several weeks, the researchers were able to detect loss of small blood vessels, changes in brain function, and a loss of connections between brain cells.

"The study demonstrates that damage to the brain's vascular system may play a key role in Alzheimer's disease, and highlights growing recognition of potential links between stroke and Alzheimer's-type dementia," said Roderick Corriveau, Ph.D., a program director at NIH's National Institute of Neurological Disorders and Stroke (NINDS), which helped fund the research. "It also suggests that we might be able to decrease the risk of Alzheimer's disease among ApoE4 carriers by improving their vascular health."

The researchers also found that ApoE2 and ApoE3 help control the levels of an inflammatory molecule called cyclophilin A (CypA), but ApoE4 does not. Levels of CypA were raised about five-fold in blood vessels of mice that produce only ApoE4.

The excess CypA then activated an enzyme, called MMP-9, which destroys protein components of the blood-brain barrier. Treatment with the immunosuppressant drug cyclosporine A, which inhibits CypA, preserved the integrity of the blood-brain barrier and lessened damage to the brain.

An inhibitor of the MMP-9 enzyme had similar beneficial effects. In prior studies, inhibitors of this enzyme have been shown to reduce brain damage after stroke in animal models.

"These findings point to cyclophilin A as a potential new drug target for Alzheimer's disease," said Suzana Petanceska, Ph.D., a program director at NIH's National Institute on Aging (NIA), which also funded Dr. Zlokovic's study.

"Many population studies have shown an association between vascular risk factors in mid-life, such as high blood pressure and diabetes, and the risk for Alzheimer's in late-life. We need more research aimed at deepening our understanding of the mechanisms involved and to test whether treatments that reduce vascular risk factors may be helpful against Alzheimer's."

Alzheimer's disease is the most common cause of dementia in older adults, and affects more than 5 million Americans. A hallmark of the disease is a toxic protein fragment called beta-amyloid that accumulates in clumps, or plaques, within the brain.

Gene variations that cause higher levels of beta-amyloid are associated with a rare type of Alzheimer's that appears early in life, between age 30 and 60.

However, it is the ApoE4 gene variant that is most strongly tied to the more common, late-onset type of Alzheimer's disease. Inheriting a single copy of ApoE4 from a parent increases the risk of Alzheimer's disease by about three-fold. Inheriting two copies, one from each parent, increases the risk by about 12-fold.

Dr. Zlokovic's study and others point to a complex interplay between beta-amyloid and ApoE4. On the one hand, beta-amyloid is known to build up in and damage blood vessels and cause bleeding into the brain.

On the other hand, Dr. Zlokovic's data suggest that ApoE4 can damage the vascular system independently of beta-amyloid. He theorizes that this damage makes it harder to clear beta-amyloid from the brain.

Some therapies under investigation for Alzheimer's focus on destroying amyloid plaques, but therapies designed to compensate for ApoE4 might help prevent the plaques from forming, he said.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Monday, July 27, 2015
Young South African Women can Adhere to Daily PrEP Regimen as HIV Prevention
NIH-funded study finds men in Bangkok, Harlem also successful in taking daily dose.
Saturday, July 25, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Early Antiretroviral Therapy Prevents Non-AIDS Outcomes in HIV-infected People
NIH-supported findings illustrate manifold benefit of therapy.
Tuesday, July 21, 2015
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Saturday, July 18, 2015
House Votes in Favor of Bill Boosting NIH Funding
The US House of Representatives today overwhelmingly voted in favor of a bill that would increase funding to the NIH by about $10 billion, help speed the development of new drugs, and advance precision medicine initiatives.
Monday, July 13, 2015
NIH-funded Vaccine for West Nile Virus Enters Human Clinical Trials
Enrollment is expected to be completed by December 2015.
Tuesday, July 07, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Boys More Likely to Have Antipsychotics Prescribed, Regardless of Age
NIH-funded study is the first look at antipsychotic prescriptions patterns in the U.S.
Thursday, July 02, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
New Medication for Alcohol Use Disorder
NIH begins clinical trial investigating a potential treatment for alcohol use disorder.
Friday, June 26, 2015
NIH Begins Clinical Trial of New Medication for Alcohol Use Disorder
Clinical trial will evaluate the safety and effectiveness of gabapentin enacarbil in treating alcohol use disorder.
Friday, June 26, 2015
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!