Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

‘1000 Genomes Barrier' Broken

Published: Thursday, November 01, 2012
Last Updated: Thursday, November 01, 2012
Bookmark and Share
A landmark project that has sequenced 1,092 human genomes from individuals around the world will help researchers to interpret the genetic changes in people with disease.

The first study to break the '1000 genomes barrier' will enable scientists to begin to examine genetic variations at the scale of the populations of individual countries, as well as guiding them in their search for the rare genetic variations related to many diseases.

The vast majority of genetic variation is shared with populations around the world but it is thought that a lot of the contribution to disease may come from rare variants of genes, found in 1 in 100 people or fewer. Researchers need to find these rare variants to see who has them and work out how they might contribute to a range of conditions from multiple sclerosis to heart disease and cancer.

The international team behind the 1000 Genomes Project found that rare gene variants tend to be restricted to particular geographic regions, because they typically arise from more recent mutations since humans spread across the world. By drilling down to genetic variants occurring at the scale of 1 in 100 people for the first time, this study will enable researchers to interpret an individual’s genome in the context of the genetic variation found in their own national population. This will help identify differences between genomes from 14 countries from Europe (including the UK), the Americas, East Asia and Africa.

A report of the research is published this week in the journal Nature.

'We are all walking natural experiments; some of our genes are switched off, some are active, whilst others are overactive,' said Professor Gil McVean of Oxford University's Department of Statistics and Wellcome Trust Centre for Human Genetics, the lead author for the study. 'Our research has found that each apparently healthy person carries hundreds of rare variants of genes that have a significant impact on how genes work, and a handful (from two to five) of rare changes that have been identified as contributing to disease in other people.'

The study has been designed so that, as well as the genome data, researchers have access to living cells (cell lines) from all 1,092 of the individuals whose genomes have been sequenced. Scientists can now study how differences in the biology of these cells correlate with genetic differences.

'There are variations that jump out from the data as looking "a bit bad for you", for example mutations in regions that regulate genes are likely to be "bad news" – possibly doing something dramatic to how cells behave,' said Dr Richard Durbin from the Wellcome Trust Sanger Institute, co-chair of the 1000 Genomes Project. 'Using our data you can now look to see if natural selection has been getting rid of such mutations – giving you a clue as to how harmful these variants might be.'

The team's work is already being used to screen cancer genomes for mutations that might identify therapeutic pathways, to interpret the genomes of children with developmental disorders and to pin-point variation that leads to increased risk for complex diseases such as heart disease or multiple sclerosis.

Professor McVean said: 'Our research shows that you can take localism much further: for example, even just within the UK, Orkney islanders will have different variations from mainlanders, and will be different again from those from other nearby islands. In the future we would like to reach the scale of having a grid of individuals giving us a different genome every couple of square kilometres but there is a long way to go before we can make this a reality.'

Sir Mark Walport, Director of the Wellcome Trust, which part-funded the study, said: 'It is quite remarkable that we have gone from completion of the first human genome sequence in 2003 to being able to sequence more than a 1000 human genomes for a single study in 2012. This study is an important contribution to our understanding of human genetic variation in health and disease and the DNA sequences are freely available for analysis and use by researchers.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

HIV Hides No Longer
Researchers are working to create proteins that clear HIV-infected cells in order to eliminate latent infection and dormancy.
Friday, July 15, 2016
Type 2 Diabetes Genetics Revealed
The largest study of its kind into type 2 diabetes has produced the most detailed picture to date of the genetics underlying the condition.
Wednesday, July 13, 2016
Massive Helium Discovery a "Game Changer" for Medical Industry
A new development is gas exploration has yielded the discovery of a huge helium gas field, which could help relieve the dwindling supply.
Thursday, July 07, 2016
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Friday, June 17, 2016
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Friday, May 27, 2016
Universal Flu Vaccine Under Development
Oxford spinout company Vaccitech has been launched with £10m seed investment to develop a universal flu vaccine already showing promise in clinical trials.
Friday, May 13, 2016
Biomarker Discovery Offers Hope For New TB Vaccine
A team of scientists led by Oxford University have made a discovery that could improve our chances of developing an effective vaccine against Tuberculosis.
Tuesday, April 12, 2016
Novel Collagen Fingerprinting Identifies A Neanderthal
Study from the universities of Oxford and Manchester uses ZooMS technique to identify traces of an extinct human.
Friday, April 01, 2016
Origin of a Species
A study by researchers at the Wellcome Trust Centre for Human Genetics at Oxford University has uncovered the key role played by a single gene in how groups of animals diverge to form new species.
Monday, February 15, 2016
HIV Keeps Growing, Even When Undetectable
A team of international researchers including scientists from Oxford University has found that HIV is still replicating in lymphoid tissue even when it is undetectable in the blood of patients on antiretroviral drugs.
Friday, January 29, 2016
Bacterial Superglue for Faster Vaccine Development
An interdisciplinary team of Oxford University researchers has devised a new technique to speed up the development of novel vaccines.
Wednesday, January 20, 2016
Millions at Risk of Little Known Deadly Tropical Disease
Melioidosis, a difficult to diagnose deadly bacterial disease, is likely to be present in many more countries than previously thought.
Tuesday, January 12, 2016
Identifying Drug Resistance Traits
Scientists have developed an easy-to-use computer program that can quickly analyse bacterial DNA from a patient's infection and predict which antibiotics will work, and which will fail due to drug resistance.
Tuesday, December 22, 2015
Faster, Cheaper TB Diagnosis
Whole Genome Sequencing is a faster, cheaper and more effective way of diagnosing tuberculosis says a new study.
Wednesday, December 09, 2015
Why we Still Don’t Have Personalised Medicine
15 years after sequencing the human genome we still do not have the promised personalised medicine, why is this?
Friday, December 04, 2015
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!