Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Measuring Molecules with the Naked Eye

Published: Thursday, November 01, 2012
Last Updated: Thursday, November 01, 2012
Bookmark and Share
Chemists’ innovation may be a better model for disease diagnostic kits.

When someone develops liver cancer, the disease introduces a very subtle difference to their bloodstream, increasing the concentration of a particular molecule by just 10 parts per billion.

That small shift is difficult to detect without sophisticated lab equipment – but perhaps not for long. A new “lab on a chip” designed by Brigham Young University professor Adam Woolley and his students reveals the presence of ultra-low concentrations of a target molecule.

As the BYU researchers report in the journal Analytical Chemistry, their experiments detected as little as a single nanogram – one billionth of a gram – of the target molecule from a drop of liquid. And instead of sending the sample to a lab for chemical analysis, the chip allows them to measure with such precision using their own eyes.

“The nice thing about the system that we have developed is that this could be done anywhere,” Woolley said. “Somebody could put the sample in, look at it, and have the result they need.”

The trick is to line a tiny pipe with receptors that catch a specific molecule and allow others to pass by. When a drop of liquid is placed on the clear chip, capillary action draws the fluid through the channel, flowing up to one centimeter per second. As more of the target molecules are snagged by the receptors, the space constricts and eventually stops the flow.

How far the sample flows is a direct indication of the concentration of the target molecule (higher concentration = shorter distance, lower concentration = longer distance).

“The accuracy gained with this system should make it competitive with more expensive and complicated immunoassay systems,” said Chuck Henry, a chemist at Colorado State University who was not affiliated with the project.

Woolley and his students hope their prototype will work as a blueprint for making inexpensive diagnostic tests for a variety of diseases and genetic disorders.

“There are a lot of molecules associated with diseases where concentrations around a nanogram per milliliter or less in blood are the difference between a disease state versus a healthy state,” Woolley said.

Four students worked on the project, led by graduate student Debolina Chatterjee of New Delhi, India. She and fellow grad student Danielle Mansfield mentored two undergraduates on the project, Neil Anderson and Sudeep Subedi.

The experience helped Anderson gain admission into law school at Cornell, where he is studying patent law. Subedi is completing a degree in clinical laboratory science and plans to eventually return to his homeland of Nepal and help establish better medical infrastructure.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Wednesday, November 25, 2015
Turkeys may be Lifesavers
Antibiotic to target staph infections, strep, comes from good bacteria in turkeys.
Thursday, November 27, 2014
Detecting Prostate Cancer With a Microfluidic Device
Innovative device detects prostate cancer, kidney disease on the spot.
Saturday, November 01, 2014
Scientists Find Gene that Causes Drug Resistance in Cancer
The discovery is a first step in creating new, effective therapeutic treatments for sufferers of aggressive cancers.
Wednesday, January 16, 2013
Detecting Cancer with the Prick of a Finger
BYU researchers create microdevice to speed up cancer detection.
Monday, November 29, 2010
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!