" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Yale-led Team Decodes Genetic Basis of Inflammatory Bowel Disease

Published: Friday, November 02, 2012
Last Updated: Thursday, November 01, 2012
Bookmark and Share
Study appears in the November 1 issue of the journal Nature.

In one of the largest studies of its kind ever conducted, an international team of scientists has thrown new light on the genetic basis of inflammatory bowel disease (IBD), a group of chronic autoimmune digestive disorders affecting 2.5 million people worldwide. The study appears in the November 1 issue of the journal Nature.

The new study links variations in 163 regions of the human genome, 71 of which are newly discovered, to an increased risk of contracting IBD.

These regions showed a striking overlap with those implicated in other autoimmune diseases, note researchers, and suggest that IBD results from overactive immune defense systems that evolved to fight off serious bacterial infections.

In IBD, the body’s immune system produces an ongoing inflammatory reaction in the intestinal tract that injures the intestinal wall, leading to diarrhea and abdominal pain.

IBD patients typically require lifelong treatment with drug therapy, and often need surgery to repair tissue damage caused by the disease.

“Up until this point we have been studying the two main forms of IBD, Crohn’s disease and ulcerative colitis, separately,” said co-lead author Judy H. Cho, the Henry J. and Joan W. Binder Professor of Gastroenterology and professor of genetics at Yale School of Medicine. “We created this study based on what seems to be a vast amount of genetic overlap between the two disorders.”

In the first step of the study, the researchers conducted a “meta-analysis” of 15 previous genomic studies of either Crohn’s disease (CD) or ulcerative colitis (UC), the two most common forms of IBD, creating a large dataset that combined genetic information from some 34,000 individuals who took part in those studies.

The results then formed part of a second meta-analysis that included data from new genome-wide scans of more than 41,000 DNA samples from CD/UC patients and healthy comparison subjects collected at 11 centers around the world by the International IBD Genetics Consortium.

In addition to confirming that 92 regions identified in previous research confer a significant risk of CD, UC, or both, the study linked 71 additional stretches of the genome to IBD.

The IBD-linked variants identified by the scientists largely fall in genomic regions that regulate the expression of immune-system genes implicated in other autoimmune diseases, particularly the skin disease psoriasis and an inflammatory joint disorder known as ankylosing spondylitis.

Genes affected by these regulatory regions are also involved in the production of immune cells that fight infection by mycobacteria, a family of microbes that cause diseases such as leprosy and tuberculosis.

“We see a genetic balancing act between defending against bacterial infection and attacking the body’s own cells,” said Jeffrey Barrett of the Wellcome Trust Sanger Institute in Cambridge, England, also a lead author of the study.

Barrett continued, “Many of the regions we found are involved in sending out signals and responses to defend against bad bacteria. If these responses are over-activated, we found it can contribute to the inflammation that leads to IBD.”

Nearly 100 scientists in 15 countries contributed to the new work, which “highlights the incredible power that working together in a large team can have,” said Cho, director of the inflammatory bowel disease center in Yale’s Department of Internal Medicine.

“This would not have been possible without the thousands of DNA samples from patients with these conditions assembled by the International IBD Genetics Consortium. Collectively, our findings have begun to uncover the biological mechanisms behind this disease.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Life-Extending Hormone Bolsters Immunity
A hormone that extends lifespan in mice by 40% is produced by specialized cells in the thymus gland, according to a new study by Yale School of Medicine researchers.
Wednesday, January 13, 2016
Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Thursday, August 27, 2015
Shedding Light On Century-Old Biochemical Mystery
Yale scientists have used magnetic resonance measurements to show how glucose is metabolized in yeast to answer the puzzle of the “Warburg Effect.”
Thursday, August 20, 2015
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
Creating More Potent Vaccines
Yale researchers uncovered a new role for a type of immune cell, known as regulatory T cells, in promoting long-term immunity.
Wednesday, July 08, 2015
Yale Team finds why BRCA Gene Resists Cancer Treatment
The University researchers have discovered why a key molecular assistant is crucial to the function of the BRCA2 gene.
Tuesday, July 07, 2015
New Type of Drug Can Target All Disease-causing Proteins
Current drugs block the actions of only about a quarter of known disease-causing proteins, but Yale University researchers have developed a technology capable of not just inhibiting, but destroying every protein it targets.
Monday, June 15, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Researchers Solve Multiple Sclerosis Puzzle
Yale study shows the role that T cells play in MS.
Monday, May 18, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
New Tool To Explore Mysteries Of The Immune System
Yale scientists use CyTOF to study a range of conditions.
Monday, April 20, 2015
A Faster, Less Expensive Way To Analyze Gene Activity
Yale researchers have devised a method that could reduce the time and cost of analyzing gene activity.
Tuesday, March 03, 2015
Li Ka Shing Foundation Renews Support for Yale Stem Cell Center
New generous grant of $1.86 million from LKSF to support education and healthcare initiatives.
Saturday, February 28, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
Yale Team Identifies Key Process In Brain Development
miR-107 shown to play essential role in regulating normal brain development.
Friday, February 06, 2015
Scientific News
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Battery Component Found to Harm Key Soil Microorganism
The material at the heart of the lithium ion batteries that power electric vehicles, laptop computers and smartphones has been shown to impair a key soil bacterium, according to new research.
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!