Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Microscopic Packets of Stem Cell Factors could be Key to Preventing Lung Disease in Babies

Published: Monday, November 05, 2012
Last Updated: Monday, November 05, 2012
Bookmark and Share
Research suggests that exosomes alone could protect infants' lungs from dangerous inflammation.

Researchers at Boston Children's Hospital have found that microscopic particles containing proteins and nucleic acids called exosomes could potentially protect the fragile lungs of premature babies from serious lung diseases and chronic lung injury caused by inflammation.

The findings explain earlier research suggesting that while transplanting a kind of stem cell called mesenchymal stem cells (MSCs) could help reduce lung injury and prevent inflammation in a mouse model, the fluid in which the cells were grown was more effective than the cells themselves.

The research team—led by Stella Kourembanas, MD, and S. Alex Mitsialis, PhD, and spearheaded by led by Changjin Lee, PhD, all of the Division of Newborn Medicine at Boston Children's—published their findings online on October 31 in the journal Circulation.

Premature babies often struggle to get enough oxygen into their underdeveloped lungs, resulting in hypoxia and the need for ventilator assistance to breathe. Their lungs are particularly susceptible to inflammation, which can lead to poor lung growth and chronic lung disease. Inflammation is also often associated with pulmonary hypertension (PH)—dangerously high blood pressure in the pulmonary artery (the vessel that carries blood from the heart to the lungs), which can have both short- and long-term consequences.

"PH is a complex disease fueled by diverse, intertwined cellular and molecular pathways," according to Kourembanas, who chairs Boston Children's Newborn Medicine division. "We have treatments that improve symptoms but no cure, largely because of this complexity. We need to be able to target more than one pathway at a time."

In 2009, Kourembanas, Mitsialis and others showed that injection of MSCs could prevent PH and chronic lung injury in a newborn mouse model of the disease. The results were puzzling, though, because the team found that few of the injected stem cells actually engrafted within the lungs. They also found that they could achieve better results by injecting just conditioned media—the fluid the cells had been grown in—than by injecting the cells themselves.

"We knew, then, that the significant anti-inflammatory and protective effects we saw had to be caused by something released by the MSCs," Kourembanas explained. "The question was, what?"

To answer that question, the research team grew mouse MSCs in the laboratory and searched the conditioned media for any secreted factors. They came upon exosomes, which many cell types, including MSCs, produce and release as a kind of communication vehicle.

The team found that injecting just purified exosomes from MSCs reduced lung inflammation and prevented the occurrence of PH in their animal model of PH. In contrast, neither MSC-conditioned media depleted of exosomes nor exosomes purified from other cell types had any effect on inflammation or PH in the model, indicating that something unique to the MSC-produced exosomes is required for their protective effect.

"We are actively working to figure out what exactly within the MSC-produced exosomes causes these anti-inflammatory and protective effects," Kourembanas said. "But we know that these exosomes contain microRNAs as well as other nucleic acids. They also induce expression of specific microRNAs in the recipient lung.”

MicroRNAs are small pieces of RNA that regulate gene activity in very specific ways. Thousands of microRNAs have been identified in species up and down the evolutionary tree since their initial discovery in worms nearly 20 years ago, suggesting they play a fundamental role in the cell's regulatory machinery.

"What we may be seeing is the effect of these microRNAs on the expression of multiple genes and the activity of multiple pathways within the lungs and the immune system all at once," she continued.

Looking to the future, Kourembanas thinks exosome research could open a new venue in the development of stem cell-based therapies. She also hopes that, with further study, MSC-produced exosomes could one day be developed into a direct therapy for premature infants at risk of or suffering from chronic lung disease and PH, or even for other diseases with an inflammatory component.

"Exosomes can be isolated from MSCs from several sources, including the umbilical cord" she says. "And unlike donor cells, exosomes are not immunogenic. As such, they could potentially be collected, banked and given like a drug, without the risks of rejection or tumor development that can theoretically come with donor cell or stem cell transplantation."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

“Deep sequencing” Picks up Hidden Causes of Brain Disorders
New approach complements whole-genome and whole-exome sequencing.
Wednesday, August 20, 2014
Shire and Boston Children’s Hospital Enter into Broad Research Collaboration
Shire PLC and Boston Children’s Hospital today announced a three-year, broad research collaboration in rare diseases.
Tuesday, November 27, 2012
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos