Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Alzheimer’s to Benefit from Landmark MRC-AstraZeneca Compound Collaboration

Published: Tuesday, November 06, 2012
Last Updated: Tuesday, November 06, 2012
Bookmark and Share
A study to investigate Alzheimer’s disease led by scientists at the University of Bristol has been awarded funding by the Medical Research Council (MRC).

The MRC has announced funding of £7 million for 15 research projects awarded through its ground-breaking collaboration with innovative pharmaceutical company AstraZeneca, which gave academic researchers unprecedented access to 22 chemical compounds.

The researchers led by Seth Love, Professor of Neuropathology in the School of Clinical Sciences, will investigate whether a compound originally evaluated by AstraZeneca for the treatment of prostate cancer could delay, or even reverse, the progression of Alzheimer’s disease by improving blood flow through the brain.

Alzheimer’s is the most common form of dementia. It is thought to affect around half a million people in the UK and its occurrence in the population is on the rise. It occurs when protein plaques and tangles develop in the brain, damaging the nerve cells. No-one knows exactly what causes the disease, in which there is build-up of a protein called amyloid beta (Abeta) in the brain.

Professor Love and his colleagues have been investigating why blood flow through the brain is reduced in people with Alzheimer’s. The more severe this reduction, the worse their symptoms and the more rapidly the disease progresses. In recent studies the group has found that the Abeta causes cells in the brain to overproduce enzymes that act on blood vessels in the brain and cause them to narrow.

By blocking the action of these enzymes, the scientists hope they can restore blood flow to the brain and improve cognitive function (or at least slow the decline). This is a completely new approach to treating Alzheimer’s as most people are currently treated with drugs that increase levels of chemical messengers known as neurotransmitters in the brain.

This Bristol-based collaborative study will test the AstraZeneca compound (zibotentan), and another drug (losartan) developed to treat high blood pressure, to assess whether they are capable of blocking the effects of Abeta on brain blood flow. If successful, the researchers hope to secure funds to carry out a randomised controlled trial in patients with Alzheimer’s disease to see whether zibotentan can halt or slow the dementia and improve their quality of life.

Professor Love said: “We were delighted to have the chance to collaborate with AstraZeneca on such an exciting project. We now have a great opportunity to test a fundamentally new approach to Alzheimer’s treatment that if successful could be rapidly translated into the clinic.”

The MRC-AstraZeneca compound collaboration was first announced by Prime Minister David Cameron in December 2011 as part of the UK Life Sciences Strategy.

AstraZeneca made 22 of its chemical compounds available free-of-charge to scientists, who were encouraged to apply for MRC funding to use them in medical research with the ultimate aim of benefitting patients. AstraZeneca had conducted early trials of these compounds and validated their use for future research, but had put them on hold for further development.  This collaboration extends the possible application of these compounds for use in new areas.

Professor Patrick Johnston, Chair of the MRC’s Translational Research Group, said: “The quality of applications we received for the MRC-AstraZeneca collaboration was higher than we could ever have hoped and we are delighted to be funding 15 excellent projects. Thanks to the generosity of AstraZeneca, UK scientists will be able to carry out medical research that otherwise may never have been possible. Not only will this bring benefits for patients in the form of more effective medicines and a better understanding of disease, but it has also allowed academic researchers to forge new partnerships with industry, which will give rise to future collaboration across the life sciences sector.”

Martin Mackay, President of AstraZeneca Research and Development, said: “AstraZeneca strives to realise the full potential of its portfolio by collaborating with research experts worldwide in our search for new and effective medicines that can benefit patients. Partnering across government, academia and industry is a critical way to spur additional scientific innovation and the delivery of new treatments for people who desperately need them.”

David Willetts, Minister for Universities and Science, said: “This landmark collaboration will see our leading scientists working with industry to find new insights into disease. It will speed up the search for innovative treatments and keep the UK at the forefront of biomedical research, which will in turn drive growth and deliver benefits for patients.”

Sharmila Nebhrajani, Chief Executive of the Association of Medical Research Charities said: “From serious but common conditions such as Alzheimer’s to rarer diseases including motor neurone disease and muscular dystrophy, we still have only a limited understanding of the way diseases develop and few therapies available for patients. Scientific advance is rooted in collaboration. The £7 million funding announced today allows scientists access to previously unavailable compounds that may hold the key to understanding some highly debilitating diseases. Patients are anxiously waiting for new therapies, and collaborations that speed up the time it takes for medicines to be developed and become available to the public are especially welcome. Medical research charities, which themselves invest over £1 billion in scientific research each year and have dedicated patient supporters, are also keen to pool our resources with industry and public funders to maximise the impact of this investment.”

After looking at over 100 expressions of interest, the MRC received 23 full funding proposals. The applications were assessed by the MRC, independently of AstraZeneca through international expert peer review, and the 15 successful proposals were selected on the basis of scientific quality and importance.

The rights to intellectual property (IP) generated using the compounds will vary from project to project, but will be equitable and similar to those currently used in academically-led research. AstraZeneca will retain its existing rights relating to the compounds and any new research findings by the academic institution will be owned by the academic institution.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Variation Identified for Teen Binge-Eating
Researchers have identified a gene variant which can lead to teenage binge eating, they hope that their work will inform the development of future preventative measures.
Wednesday, July 22, 2015
What Causes Immune Cell Migration To Wounds
Study shows triggers which lead immune cells to react and respond to wounded sites.
Friday, May 29, 2015
Fighting Prostate Cancer with a Tomato-Rich Diet
New research suggests that men who eat over 10 portions of tomatoes a week have an 18% lower risk of developing prostate cancer.
Thursday, August 28, 2014
Breakthrough Shows How DNA is ‘Edited’ to Correct Genetic Diseases
An international team of scientists has made a major step forward in our understanding of how enzymes 'edit' genes, paving the way for correcting genetic diseases in patients.
Wednesday, May 28, 2014
Deciphering the Role of Fat Stem Cells in Obesity and Diabetes
New study will examine stem cells to pinpoint how excess fat is stored, potentially paving the way for new treatments to combat obesity-linked diseases.
Wednesday, May 21, 2014
Molecular Biology Mystery Unravelled
Machinery responsible for the entry of proteins into cell membranes.
Saturday, February 22, 2014
Beauty and the Lab: Scientists Reveal the Art of Science
From a heart-shaped cell nucleus to a 3D molecular syringe, creative scientists have revealed the beauty found in complex and technical research.
Monday, December 16, 2013
New Swine Influenza Project to Better Understand Virus Transmission
The Pirbright Institute in Surrey has been awarded £4.4 million to work with researchers from universities on a long-term study on the transmission of swine influenza.
Friday, December 13, 2013
Global Carbon Dioxide Emissions to Reach 36 Billion Tonnes in 2013
Global emissions of carbon dioxide from the combustion of fossil fuels will reach 36 billion tonnes for the year 2013 – a level unprecedented in human history.
Tuesday, November 26, 2013
Human Neural Stem Cells Could Meet the Clinical Problem of Critical Limb Ischemia
New research has shown human neural stem cells could improve blood flow in critical limb ischemia through the growth of new vessels.
Monday, November 25, 2013
Bristol Spearheads UK’s Role in €4 Million Synthetic Biology Project
The University of Bristol has been awarded a share of a €4million (£3.3million) European Union grant to improve public awareness of synthetic biology.
Tuesday, November 19, 2013
North Atlantic Atmospheric Circulation Increases Mountainous Weather Systems and River Flow in Upland Britain
The North Atlantic Oscillation (NAO) is the most important type of climatic variability in the northern hemisphere.
Friday, August 09, 2013
New Findings Could Influence the Development of Therapies to Treat Dengue Disease
New research into the fight against Dengue may influence the development of anti-viral therapies that are effective against all four types of the virus.
Monday, August 05, 2013
Cheap Anti-Cancer Drug is Effective in Treating Most Common Cause of Blindness in Older Adults
An anti-cancer drug has been proven to be equally as effective in treating the most common cause of blindness in older adults as a more expensive drug specifically formulated for this purpose.
Friday, July 19, 2013
Genome of 700,000-Year-Old Horse Sequenced
The oldest genome so far from a prehistoric creature has been sequenced by an international team.
Thursday, June 27, 2013
Scientific News
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Detecting HIV Diagnostic Antibodies with DNA Nanomachines
New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV.
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Horse Illness Shares Signs of Human Disease
Horses with a rare nerve condition have similar signs of disease as people with conditions such as Alzheimer’s, a study has found.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos