Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

A Protein's Role in Helping Cells Repair DNA Damage

Published: Tuesday, November 06, 2012
Last Updated: Tuesday, November 06, 2012
Bookmark and Share
A new study elucidates the role that a protein called TFIIB plays in supporting the activity of p53, a protein that helps suppress tumors.

In a new study, University at Buffalo scientists describe the role that a protein called TFIIB plays in helping cells repair DNA damage, a critical function for preventing the growth of tumors.
The research appeared online on Oct. 30 in the Proceedings of the National Academy of Sciences (PNAS) Early Edition.

TFIIB, short for "transcription factor II B," is a protein that binds to DNA in cells to initiate the process of transcription, which is critical for building new proteins.

When DNA damage occurs, TFIIB is altered in a way that halts general transcription, enabling a cell to give priority to repair, the researchers found. With the shut-down in effect, cells are able to prioritize the important functions carried out by a tumor-suppressing protein called p53, said lead author Jayasha Shandilya, a postdoctoral researcher in UB's Department of Biological Sciences.

"P53 is a very important protein in humans and other multicellular organisms," Shandilya said. "It is called the 'guardian of the genome' because it helps maintain the stability of the genome."

About half of cancer cases involve a mutation or deletion of the p53 gene. When DNA is damaged, it activates p53, which not only stimulates the DNA repair pathway, but also triggers the synthesis of proteins that stop cells from dividing before problems are fixed, she said. In cases where the damage is irreparable, p53 initiates apoptosis, a process of programmed cell death.

In PNAS, Shandilya and colleagues report that for normal transcription to occur, TFIIB must undergo a process called phosphorylation, in which a phosphate group is attached to the protein.

But when the scientists studied cells treated with DNA damaging agents, they found that TFIIB was dephosphorylated, preventing general transcription and enabling the cells to focus resources on helping p53 carry out its tumor suppressing functions. In essence, p53 can bypass the need for TFIIB phosphorylation to activate transcription of its target genes, which are vital for DNA damage response.

Shandilya's colleagues on the PNAS paper are Yuming Wang, currently working at Cancer Research UK, and Stefan Roberts, assistant professor of biological sciences. Roberts oversaw the study, with funding from the National Institute of General Medical Sciences, one of the National Institutes of Health.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Technique for Studying Cellular Interfaces
The method, used to study cells involved in myelination, provides “a glimpse into the social life of cells” and boosts understanding of myelin diseases such as MS and Krabbe’s leukodystrophy.
Monday, September 21, 2015
E. Coli Can Be Transformed into Antibiotic Factories
Scientists have engineered E.coli to generate new varieties one of the most commonly used antibiotics, Erythromycin.
Wednesday, June 03, 2015
A Hybrid Vehicle That Delivers DNA
University at Buffalo researchers are developing new technology to improve DNA vaccines. The new transport system for DNA vaccines could help treat HIV, malaria, HPV and other major illnesses.
Thursday, November 27, 2014
How ‘Bad’ Cholesterol Causes Atherosclerosis in Humans: Stem cells play a Key Role
Study translates to humans a finding previously shown in lab animals that could lead to new therapy to use with statins or in place of them.
Monday, September 30, 2013
Clues to Autoimmune Conditions are Revealed by Genomic Analysis of a Skin Disease
UB researchers’ findings about Pemphigus vulgaris reveal a novel protective mechanism in at-risk individuals who remain healthy.
Monday, September 30, 2013
Nanotechnology Identifies Peptide "Fingerprint" in both Forms of ALS
A nanospray emitter developed by University at Buffalo chemist has identified a common molecular signature in familial and sporadic forms of ALS.
Wednesday, September 05, 2007
Engineered Blood Vessels Function like Native Tissue
Researchers says that blood vessels that have been tissue-engineered from bone marrow adult stem cells may serve as a patient's own source of new blood vessels.
Wednesday, July 11, 2007
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos