Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Step Toward Stronger Polymers

Published: Tuesday, November 06, 2012
Last Updated: Tuesday, November 06, 2012
Bookmark and Share
Counting loops that weaken materials could help researchers eliminate structural flaws.

Many of the objects we encounter are made of polymers — long chains of repeating molecules. Networks of polymers form manmade materials such as plastics, as well as natural products such as rubber and cellulose.

Within all of these polymeric materials, there are structural flaws at the molecular level. To form an ideal network, each polymer chain would bind only to another chain. However, in any real polymeric material, a significant fraction of the chains instead bind to themselves, forming floppy loops.

“If your material properties depend on having polymers connected to each other to form a network, but you have polymers folded around and connected to themselves, then those polymers are not part of the network. They weaken it,” says Jeremiah A. Johnson, an assistant professor of chemistry at MIT.

Johnson and his colleagues have now developed, for the first time, a way to measure how many loops are present in a given polymer network, an advance they believe is the first step toward creating better materials that don’t contain those weak spots.

Huaxing Zhou, an MIT postdoc, is the lead author of a paper describing the new technique in this week’s issue of the Proceedings of the National Academy of Sciences. Other authors are visiting researcher Jiyeon Woo, chemistry graduate student Alexandra Cok, chemical engineering graduate student Muzhou Wang, and Bradley Olsen, an assistant professor of chemical engineering.

Although polymer chemists have known about these loops since the 1940s, they have had no way to count them until now. In the new paper, the researchers measured the percentage of loops in a gel, but their approach could be used for nearly any type of polymer network, Johnson says.

To measure the number of loops, the researchers first design polymer chains that incorporate a chemical bond, in a specific location, that can be broken using hydrolysis. Once the polymer crosslinks into a gel network, the researchers treat it with a base that cleaves this chemical bond, known as an ester. (Other degradation methods, such as enzymes or light, could also be used.)

Because they know where the break points are, the researchers can predict the percentages of the four different degradation products they should expect to find in an ideal, no-loop network. By measuring the quantity of each degradation product and comparing it with the ideal, they can figure out what fraction of the polymer formed loops.

They found that the percentage of polymer loops ranges from about 9 percent to nearly 100 percent, depending on the concentration of polymers in the starting material and other factors.

“Even in the best material we can make, 9 percent of its junctions are wasted as loops, which tells us that if can figure out a way to reduce loop formation, we’d have a 9 percent improvement in material properties,” Johnson says.

Christopher Bielawski, a professor of chemistry at the University of Texas at Austin, says the new technique overcomes longstanding limitations in chemists’ understanding of the exact structures of polymers.

“The technique is a beautiful combination of experiment, theory and state-of-the-art analytics that takes the field a giant step toward sorting out a problem of tremendous importance,” says Bielawski, who was not part of the research team.

The researchers are now looking for ways to reduce the number of loops by altering the mixture of polymers used to produce a material, as well as the reaction conditions. They are also planning to use their method to study interactions between cells and biological materials. It has already been shown that at the micron scale, cells behave differently depending on the mechanical properties of their environment, such as stiffness.

In their new studies, the MIT researchers want to look at nanoscale interactions between cells and specific protein sequences found in the extracellular matrix, which provides structural support for cells.

The researchers hope to uncover what happens when a cell grabs on to a protein that is looped on itself rather than being attached to the extracellular matrix.

The research was funded by the MIT Department of Chemistry, MIT’s Institute for Soldier Nanotechnologies, and a National Defense Science and Engineering Graduate Fellowship.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Friday, July 01, 2016
New System for Detecting Explosives
Spectroscopic system with chip-scale lasers cuts detection time from minutes to microseconds.
Wednesday, June 01, 2016
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Core-Shell Columns in HPLC: Food Analysis Applications
Explore the most recent applications of core-shell columns in food analysis.
Review of the Analysis of Haemoglobin A1c for Diabetes Diagnostics
This paper aims to clarify methods, units, quality requirements, reference and cutoff limits for hemoglobin A1c (HbA1c) and ratio of blood glucose/HbA1c on the basis of the results from Finnish quality control surveys by comparing them to the literature.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Vaccine Strategy Targets Multiple Influenza Viruses
Scientists have identified vaccine-induced antibodies that can neutralize strains of influenza virus that infect humans.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!