Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A Step Toward Stronger Polymers

Published: Tuesday, November 06, 2012
Last Updated: Tuesday, November 06, 2012
Bookmark and Share
Counting loops that weaken materials could help researchers eliminate structural flaws.

Many of the objects we encounter are made of polymers — long chains of repeating molecules. Networks of polymers form manmade materials such as plastics, as well as natural products such as rubber and cellulose.

Within all of these polymeric materials, there are structural flaws at the molecular level. To form an ideal network, each polymer chain would bind only to another chain. However, in any real polymeric material, a significant fraction of the chains instead bind to themselves, forming floppy loops.

“If your material properties depend on having polymers connected to each other to form a network, but you have polymers folded around and connected to themselves, then those polymers are not part of the network. They weaken it,” says Jeremiah A. Johnson, an assistant professor of chemistry at MIT.

Johnson and his colleagues have now developed, for the first time, a way to measure how many loops are present in a given polymer network, an advance they believe is the first step toward creating better materials that don’t contain those weak spots.

Huaxing Zhou, an MIT postdoc, is the lead author of a paper describing the new technique in this week’s issue of the Proceedings of the National Academy of Sciences. Other authors are visiting researcher Jiyeon Woo, chemistry graduate student Alexandra Cok, chemical engineering graduate student Muzhou Wang, and Bradley Olsen, an assistant professor of chemical engineering.

Although polymer chemists have known about these loops since the 1940s, they have had no way to count them until now. In the new paper, the researchers measured the percentage of loops in a gel, but their approach could be used for nearly any type of polymer network, Johnson says.

To measure the number of loops, the researchers first design polymer chains that incorporate a chemical bond, in a specific location, that can be broken using hydrolysis. Once the polymer crosslinks into a gel network, the researchers treat it with a base that cleaves this chemical bond, known as an ester. (Other degradation methods, such as enzymes or light, could also be used.)

Because they know where the break points are, the researchers can predict the percentages of the four different degradation products they should expect to find in an ideal, no-loop network. By measuring the quantity of each degradation product and comparing it with the ideal, they can figure out what fraction of the polymer formed loops.

They found that the percentage of polymer loops ranges from about 9 percent to nearly 100 percent, depending on the concentration of polymers in the starting material and other factors.

“Even in the best material we can make, 9 percent of its junctions are wasted as loops, which tells us that if can figure out a way to reduce loop formation, we’d have a 9 percent improvement in material properties,” Johnson says.

Christopher Bielawski, a professor of chemistry at the University of Texas at Austin, says the new technique overcomes longstanding limitations in chemists’ understanding of the exact structures of polymers.

“The technique is a beautiful combination of experiment, theory and state-of-the-art analytics that takes the field a giant step toward sorting out a problem of tremendous importance,” says Bielawski, who was not part of the research team.

The researchers are now looking for ways to reduce the number of loops by altering the mixture of polymers used to produce a material, as well as the reaction conditions. They are also planning to use their method to study interactions between cells and biological materials. It has already been shown that at the micron scale, cells behave differently depending on the mechanical properties of their environment, such as stiffness.

In their new studies, the MIT researchers want to look at nanoscale interactions between cells and specific protein sequences found in the extracellular matrix, which provides structural support for cells.

The researchers hope to uncover what happens when a cell grabs on to a protein that is looped on itself rather than being attached to the extracellular matrix.

The research was funded by the MIT Department of Chemistry, MIT’s Institute for Soldier Nanotechnologies, and a National Defense Science and Engineering Graduate Fellowship.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
MIT Study: Carbon Tax Needed to Cut Fossil Fuel Consumption
Researchers at MIT have suggested that the technology-driven cost reductions in fossil fuels will lead the world to continue using all the oil, gas, and coal, unless governments pass new taxes on carbon emissions.
Thursday, February 25, 2016
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Living a “Mixotrophic” Lifestyle
Some tiny plankton may have big effect on ocean’s carbon storage.
Tuesday, February 02, 2016
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
Friday, January 29, 2016
No More Insulin Injections?
Encapsulated pancreatic cells offer possible new diabetes treatment.
Tuesday, January 26, 2016
Engineering Foe into Friend
Bose Grant awardee Jacquin Niles aims to repurpose the malaria parasite for drug delivery.
Monday, January 25, 2016
Scientific News
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Improving Natural Killer Cancer Therapy
Vanderbilt University researchers discover transcription factor critical for NK cell expansion. Findings could lead to increased therapeutic efficacy.
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
Autism and Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
FNIH Launches Project to Evaluate Biomarkers in Cancer Patients
Company has announced that it has launched a new project to evaluate the effectiveness of liquid biopsies as biomarkers in colorectal cancer patients.
Flowering Regulation Mechanism Discovered
Monash researchers have discovered a new mechanism that enables plants to regulate their flowering in response to raised temperatures.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!