Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Exome Sequencing: Potential Diagnostic Assay for Unexplained Intellectual Disability

Published: Monday, November 12, 2012
Last Updated: Monday, November 12, 2012
Bookmark and Share
Research findings confirming that de novo mutations represent a major cause of previously unexplained intellectual disability were presented at the American Society of Human Genetics 2012 meeting.

Josep de Ligt, M.Sc., bioinformatician and Ph.D. student in human genetics at Radboud University Nijmegen Medical Centre in The Netherlands, also reported findings lending support to the use of exome sequencing, which deciphers over 21,000 protein-coding genes and not the entire human genome, as a diagnostic assay to determine whether one or more genetic mutations explain a patient’s intellectual disability.

The cause of intellectual disability, which represents a wide range of phenotypes, or observable biological characteristics, is unknown in at least 50% of patients. Most individuals with intellectual disability without a known cause are the only members of their families with the condition. Because the cause of their child’s cognitive impairment is unknown, parents are often baffled.

The child with a cognitive disability is often an “isolated case without family history of the condition,” said de Ligt, adding that intellectual disability occurs in about 1% of the population.

By exome sequencing of 100 patients with unexplained cognitive impairment, de Ligt and his colleagues uncovered 79 genes with unique de novo mutations. These de novo mutations were present in the DNA of the patients but not in that of their parents whose exomes also were sequenced.

“All de novo as well as X-linked mutations identified in this study were interpreted in the context of the clinical diagnosis,” de Ligt pointed out. The diagnostic interpretation revealed that 16 of the 100 mutations were causative, or pathogenic. Ten of these mutations occurred in genes already known to be involved in intellectual disability, and three X-linked maternally-inherited mutations were identified.

In addition, de novo mutations were uncovered in three novel candidate genes, which after follow-up were found to be more frequently mutated in patients with intellectual disability.

“Comparison of these patients showed clear overlapping phenotypes, thereby establishing pathogenicity for these three new genes,” said de Ligt.

Furthermore, disruptive de novo mutations were identified in 19 additional genes with a functional link to intellectual disability. Because 19 genes were found in only a single patient, de Ligt said that a conclusive diagnosis based on these findings could not be made.

Additional studies in larger patient cohorts will likely to confirm a considerable proportion of these as true intellectual disability genes, raising the diagnostic yield of this approach, he added.

“This study confirms that de novo mutations represent a major cause of previously unexplained intellectual disability,” said Joris Veltman, Ph.D., associate professor in human genetics, Radboud University Nijmegen Medical Centre. “Because of the availability of large scale sequencing strategies, these mutations can now be readily revealed.”

de Ligt said that the results of the study recommend “exome sequencing as a diagnostic assay for patients with unexplained intellectual disability.”

The researchers’ abstract is titled, “Diagnostic exome sequencing in patients with intellectual disability of unknown cause.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

ASHG, The Jackson Laboratory Launch Educational Collaboration
New programs aim to integrate genetics and genomics into medicine.
Friday, June 13, 2014
DNA Variants Explain Over 10% of Inherited Genetic Risk for Heart Disease
About 10.6% of the inherited genetic risk for developing coronary artery disease (CAD) can be explained by specific DNA variations.
Monday, November 12, 2012
New Method Helps Link Genomic Variation to Protein Production
Research presented at American Society of Human Genetics 2012.
Friday, November 09, 2012
Scientific News
Breaking Through the Barriers to Lab Innovation
Here we examine the drivers behind the move for greater innovation, the challenges and current trends in laboratory informatics, and the tools that can be used to break these barriers.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Fruit Fly Pheromone Flags Great Real Estate for Starting a Family
Finding could aid efforts to control mosquito-borne diseases like malaria by manipulating odorants
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
New Therapy Reduces Symptoms of Inherited Enzyme Deficiency
A phase three clinical trial of a new enzyme replacement medication, sebelipase alfa, showed a reduction in multiple disease-related symptoms in children and adults with lysosomal acid lipase deficiency, an inherited enzyme deficiency that can result in scarring of the liver and high cholesterol.
Adult High Blood Pressure Risk Identifiable in Childhood
Groups of people at risk of having high blood pressure and other related health issues by age 38 can be identified in childhood, new University of Otago research suggests.
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Supercoiled DNA is Far More Dynamic Than the “Watson-Crick” Double Helix
Researchers have imaged in unprecedented detail the three-dimensional structure of supercoiled DNA, revealing that its shape is much more dynamic than the well-known double helix.
Mini-kidneys Successfully Grown from Stem Cells
Researchers from Murdoch Childrens Research Institute have perfected a method of turning stem cells into mini-kidneys for use in drug screening, disease modelling and cell therapy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos