Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Personalized Medicine From Genomics and Bioinformatics Highlighted at UCSF Genetics Symposium

Published: Thursday, November 15, 2012
Last Updated: Thursday, November 15, 2012
Bookmark and Share
Personalized medicine advances arising from genetic discoveries were the primary focus of wide-ranging presentations at the UCSF Institute for Human Genetics 2012 Symposium.

Speakers described clinical research that has resulted in the identification of gene mutations that often drive deadly breast cancers in black populations; explained how rare mutations responsible for devastating developmental defects in infants can now be discovered in studies of just a handful of individuals from affected families; offered a preview of results expected to emerge from studies of genes and environment in hundreds of thousands of patients through a Kaiser Permanente-UCSF project; and described technical advances that continue to increase scientists’ ability to identify links between DNA and disease.

All the speakers “are at the cutting edge of applying genomics and informatics to precision medicine,” said the institute’s director Neil Risch, MD, referring to an emerging trend in medicine in which treatment is tailored to the patient through a more precise diagnosis of disease.

At UCSF — a crucible of biotechnology and home to Nobel laureates who identified a role for the mutation of normal genes in cancer — major new initiatives are underway in clinical genetics and bioinformatics, Risch said.

The symposium led off with geneticist Eddy Rubin, MD, PhD, whose presentation demonstrated that genetic studies are being applied to human problems that extend even beyond the realm of medicine.

Rubin – a scientist who oversaw the sequencing and analysis of 13 percent of the human genome as part of the original Human Genome Project – has taken his research from studying abnormalities in DNA “enhancers” that may contribute to disease susceptibility or birth defects, to cutting global greenhouse gas emissions by manipulating gut microbes in sheep.

Early in his career, Rubin completed a medical genetics fellowship under the late Charles Epstein, MD, a founding director of the UCSF Institute for Human Genetics and a driving force behind medical genetics becoming an accredited medical specialty. Rubin was featured at the symposium as the named 2012 Charles J. and Lois B. Epstein Visiting Professor at UCSF.

Rubin, director of the Department of Energy’s Joint Genome Institute and director of the Genome Sciences Division at Lawrence Berkeley National Laboratory, is a pioneer in exploring DNA beyond genes, which until recently was a poorly understood realm that may nonetheless prove to be key to understanding fundamental aspects of biology and disease.

Researchers were for decades focused on DNA that encodes proteins – the genes. But the sequencing and analysis of the genome has revealed that genes account for less than 2 percent of the DNA on the 46 human chromosomes. Within the universe of DNA, the stuff beyond the genes is comparable to the poorly understood dark matter of the cosmos.

DNA 'Enhancers' Guide Development

Rather than working under the lamppost where the genes are, Rubin explores DNA within these dark regions of the chromosomes. He focuses on bits of DNA called “enhancers,” which play an important role in determining how much protein is made from a gene at a particular time and place within an organism – with great implications for how a creature develops.

Rubin wondered: Could abnormal enhancers or unusual variations in specific enhancers be playing a role in disease susceptibility or birth defects?

Some enhancers are similar across many organisms, while others are more specific to humans or to other species, Rubin said. Within the cell’s DNA, the enhancers often are nowhere near the genes they affect, but Rubin has developed new ways to find them.

Enhancers switch on and off as an organism develops, and some are uniquely activated within particular tissues. Many enhancers are the same in different species, “conserved” through the course of evolution.

But the enhancers that switch on later in development are more likely to be unique to that species. “Early in development, we see very conserved enhancers, but later on during development we see enhancers that are not conserved,” Rubin said.

Thus the developing human heart, which forms early during embryogenesis, shares many enhancers with the developing hearts of other species. Brains, which form later, share fewer enhancers across species.

Working with mice, Rubin has identified 4,400 enhancers involved in shaping the face and the bones of the head and found that some abnormal enhancer DNA appears to play a role in facial abnormalities. “We’re seeing subtle effects … with many variants causing small effects,” he said.

Sheep Flatulence and Global Warming

At the DOE Joint Genome Institute, Rubin has begun to devote more of his research effort to the study of global greenhouse gases, specifically the contributions from livestock such as cows and sheep. These barnyard beasts harbor gut microbes that produce methane while helping the sheep to digest grass and other sources of cellulose.

As countries with large populations become wealthier, their citizens not only aspire to drive more cars and own more appliances, they also want to eat more meat, Rubin said, which is likely to lead to yet more greenhouse gas production as more of these domestic animals are raised to meet the growing demand.

In New Zealand, Rubin said, “They do believe in climate change, and they are putting in place a carbon tax, and they’re going to be charging their sheep farmers. So the sheep farmers are very interested in how the sheep produce methane and whether they can mitigate it at all.”

Rubin and his New Zealand colleagues studied 23 age- and size-matched members of a flock of sheep raised in the same pasture. The gut, or more precisely the “rumen” of a sheep contains massive amounts of bacteria, protozoa and fungi that ferment cellulose in grass and convert it into nutrients for the sheep. But sheep also house another type of microbe called Archaea. Archaea produce methane, which the sheep burp and fart out, Rubin said.

Genetic analysis permitted the researchers to figure out why methane emissions varied among sheep and to determine how Archaea might be a suitable target of efforts to lower methane release.

Rubin and colleagues did not find differences in the numbers of methane-producing microbes between the high-methane and low-methane producing sheep, but they did find that the methane-producing microbes within high-methane-emitting sheep were better at making methane, as evidenced by the increased activation of genes involved in the biochemical steps of methane production.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Scientific News
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Faster, Cheaper Way to Produce New Antibiotics
A novel way of synthesising a promising new antibiotic has been identified by scientists at the University of Bristol.
Process Contaminants in Vegetable Oils and Foods
Glycerol-based process contaminants found in palm oil, but also in other vegetable oils, margarines and some processed foods, raise potential health concerns for average consumers of these foods in all young age groups, and for high consumers in all age groups.
Improving Natural Killer Cancer Therapy
Vanderbilt University researchers discover transcription factor critical for NK cell expansion. Findings could lead to increased therapeutic efficacy.
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
Autism, Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!