Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Detection, Analysis of 'Cell Dust' may Allow Diagnosis, Monitoring of Brain Cancer

Published: Thursday, November 15, 2012
Last Updated: Thursday, November 15, 2012
Bookmark and Share
System combining nanotechnology and NMR detects particles shed by brain tumors in bloodstream.

A novel miniature diagnostic platform using nuclear magnetic resonance (NMR) technology is capable of detecting minuscule cell particles known as microvesicles in a drop of blood. Microvesicles shed by cancer cells are even more numerous than those released by normal cells, so detecting them could prove a simple means for diagnosing cancer. In a study published in Nature Medicine, investigators at the Massachusetts General Hospital (MGH) Center for Systems Biology (CSB) demonstrate that microvesicles shed by brain cancer cells can be reliably detected in human blood through a combination of nanotechnology and their new NMR-based device.

"About 30 or 40 years ago, people noticed something in the bloodstream that they initially thought was some kind of debris or 'cell dust',"explains Hakho Lee, PhD, of the CSB, and co-senior author of the study with Ralph Weissleder, MD, PhD, director of the CSB. "But it has recently become apparent that these vesicles shed by cells actually harbor the same biomarkers as their parent cells."

Circulating tumor cells (CTCs) have been regarded as a potential key to improved cancer diagnosis, but Lee explains, "The problem with CTCs is that they are extremely rare, so finding them in the blood is like trying to find a needle in a haystack." Microvesicles on the other hand are abundant in the circulation and, unlike CTCs, are small enough to cross the blood/brain barrier, which means that they could be used to detect and monitor brain cancers, he adds.

Glioblastoma multiforme (GBM) is the most common and most aggressive brain cancer in humans. By the time it is diagnosed, patients typically have less than 15 months to live. One of the biggest challenges with this condition is accurate disease monitoring to establish whether patients are responding to treatment. Currently, the only way to diagnose and monitor GBM is with biopsies and imaging tests, making long-term treatment monitoring difficult, invasive and impractical. To address this need, the CSB team sought to develop a simple blood test that could be used to easily monitor disease progression.

"The issue with microvesicles, however, is that they are very small, so there are not many technologies out there that can detect and molecularly profile them," explains Lee. "That is where our new technology comes in." By using nanotechnology to magnetically label microvesicles, and by adapting and improving equipment they developed last year to detect cancer cells with a miniature, hand-held NMR, the MGH researchers were able to reliably detect the tumor microvesicles in blood samples from mice bearing human GBM tumors and eventually in samples from human GBM patients. Compared with other gold-standard techniques, this new technology demonstrated excellent detection accuracy. However, unlike other methods – which can be time-consuming and require much greater sample volumes as well as expertise to perform – NMR detection is quick and simple, potentially providing almost instant results from a small blood sample right in a doctor's office, the authors note. The MGH CSB team is currently extending this platform to other types of cancer and to other diseases such as bacterial infection. A number of clinical studies are currently ongoing, and others are in the planning stages, with the goal of eventually commercializing the technology.

"These microvesicles were found to be remarkably reliable biomarkers," confirms Weissleder. "They are very stable and abundant and appear to be extremely sensitive to treatment effects. In both animals and human patients, we were able to monitor how the number of cancer-related microvesicles in the bloodstream changed with treatment," explains Weissleder. "Even before an appreciable change in tumor size could be seen with imaging, we saw fewer microvesicles. It's like they are a harbinger of treatment response." Weissleder is a professor of Radiology and Lee an assistant professor at Harvard Medical School.

Huilin Shao of the MGH Center for Systems Biology is lead author of the Nature Medicine report. Additional co-authors are Jaehoon Chung, PhD, MGH CSB; Leonora Balaj and Xandra Breakefield, PhD, MGH Neurology; Fred Hochberg, MD, MGH Cancer Center; Alain Charest, PhD, Tufts University School of Medicine; Darell Bigner, MD, PhD, Duke University Medical Center; and Bob S. Carter, MD, PhD, University of California, San Diego. The study was supported by grants from the National Institutes of Health.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNAi Activated in Response to Influenza
Discovery could lead to better ways of combating serious infections, including Ebola and Zika.
Tuesday, December 06, 2016
Largest Resource of Protein-Protein Interactions
Researchers have developed the largest ever database of protein-protein interactions.
Wednesday, November 30, 2016
Blood Tests for Brain Cancer
Neurosurgeon works to develop the first blood-based test for patients with brain tumors.
Monday, November 21, 2016
Study Finds Following a Healthy Lifestyle Can Greatly Reduce Genetic Heart Attack Risk
Even among those at highest genetic risk, lifestyle factors can reduce incidence by one half.
Tuesday, November 15, 2016
Gut Microbiome Linked to Inflammatory Proteins
Study looking at influence of genetics, microbiome and environment on immune response links intestinal microbial population to production of inflammatory proteins.
Monday, November 07, 2016
HIV Patient's Lifespan Reduced More by Smoking than HIV
Study finds smoking has double the impact of HIV on life expectancy in those adhering to antiviral treatment.
Monday, November 07, 2016
Cancer Stem Cells Fuel Tumor Growth
Mass. General, Broad Institute team finds strong evidence that cancer stem cells are important drivers of tumors in patients.
Thursday, November 03, 2016
Tracking Alzheimer's Progression
MRI data reveals structural asymmetries that vary among individuals and are greater among those who develop dementia.
Wednesday, November 02, 2016
Signaling Pathway Could Be Key to Improved Osteoporosis Treatment
Inhibition of SIK2 enzyme both stimulates bone formation and reduces bone breakdown in animal model.
Thursday, October 20, 2016
Breast Cancer Cells Found To Switch Molecular Characteristics
Spontaneous interconversion between HER2-positive and HER2-negative states could contribute to progression, treatment resistance in breast cancer.
Friday, August 26, 2016
Obesity Prevents Treatment of Pancreatic Cancer
Researchers discover mechanism, linked to obesity, that increases inflammation and conditions in pancreatic cancer by creating an ideal micro-environment.
Tuesday, July 12, 2016
Nanoprobe Enables Measurement of Protein Dynamics in Living Cells
Mass. General and Harvard researchers use device to measure how anesthetic affects levels of Alzheimer's-associated proteins.
Thursday, June 16, 2016
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Friday, May 27, 2016
Rapid Diagnosis of Bacterial Infections
Mass. General-developed compact system could shorten diagnostic time from days to hours, bring testing to point of care.
Wednesday, May 11, 2016
Functional Heart Muscle Regenerated in Decellularized Human Hearts
Mass. General team generates stem-cell derived heart muscle in cell-free human cardiac matrix.
Tuesday, March 15, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Biological Link between the Gut Microbiome and Parkinson’s Disease
The findings suggest that targeting the gut microbiome may provide a new approach for diagnosing and treating Parkinson’s disease.
How the Brain Recognizes Faces
Machine-learning system spontaneously reproduces aspects of human neurology.
Boosting Effectiveness of Asthma Therapy
A team of scientists from UCSF has developed a new treatment to dampen bronchospasm.
Improved Stability, Shelf Life of Protein Drugs
Study improves protein drug stability and extend their shelf life by tested a novel route for non-covalent protein modification.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!