Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Study Offers Clues to Cause of Kids’ Brain Tumors

Published: Tuesday, November 20, 2012
Last Updated: Tuesday, November 20, 2012
Bookmark and Share
Insights from a genetic condition that causes brain cancer are helping scientists better understand the most common type of brain tumor in children.

In new research, scientists at Washington University School of Medicine in St. Louis have identified a cell growth pathway that is unusually active in pediatric brain tumors known as gliomas. They previously identified the same growth pathway as a critical contributor to brain tumor formation and growth in neurofibromatosis-1 (NF1), an inherited cancer predisposition syndrome.

“This suggests that the tools we’ve been developing to diagnose and treat NF1 may also be helpful for sporadic brain tumors,” says senior author David H. Gutmann, MD, PhD, the Donald O. Schnuck Family Professor of Neurology.

The findings appear Dec. 1 in Genes and Development.

NF1 is among the most common tumor predisposition syndromes, but it accounts for only about 15 percent of pediatric low-grade gliomas known as pilocytic astrocytomas. The majority of these brain tumors occur sporadically in people without NF1.

Earlier research showed that most sporadic pilocytic astrocytomas possess an abnormal form of a signaling protein known as BRAF. In tumor cells, a piece of another protein is erroneously fused to the business end of BRAF.

Scientists suspected that the odd protein fusion spurred cells to grow and divide more often, leading to tumors. However, when they gave mice the same aberrant form of BRAF, they observed a variety of results. Sometimes gliomas formed, but in other cases, there was no discernible effect or a brief period of increased growth and cell division. In other studies, the cells grew old and died prematurely.

Gutmann, director of the Washington University Neurofibromatosis Center, previously showed that mouse NF1-associated gliomas arise from certain brain cells.

According to Gutmann, the impact of abnormal NF1 gene function on particular cell types helps explain why gliomas are most often found in the optic nerves and brainstem of children with NF1 — these areas are where the susceptible cell types reside.

With that in mind, Gutmann and his colleagues tested the effects of the unusual fusion BRAF protein in neural stem cells from the cerebellum, where sporadic pilocytic astrocytomas often form, and in cells from the cortex, where the tumors almost never develop.

“Abnormal BRAF only results in increased growth when it is placed in neural stem cells from the cerebellum, but not the cortex,” Gutmann says. “We also found that putting fusion BRAF into mature glial cells from the cerebellum had no effect.”

When fusion BRAF causes increased cell proliferation, postdoctoral fellows Aparna Kaul, PhD, and Yi-Hsien Chen, PhD, showed that it activates the same cellular growth pathway, called mammalian target of rapamycin (mTOR), that is normally also controlled by the NF1 protein. An extensive body of research into the mTOR pathway already exists, including potential treatments to suppress its function in other forms of cancer.

“We may be able to leverage these insights and our previous work in NF1 to improve the treatment of these common pediatric brain tumors, and that’s very exciting,” Gutmann says.

Gutmann and his colleagues are now working to identify more of the factors that make particular brain cells vulnerable to the tumor-promoting effects of the NF1 gene mutation and fusion BRAF. They are also developing animal models of sporadic pilocytic astrocytoma for drug discovery and testing.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Tracking Bugs’ Reveal Secret of Cancer Cell Metabolism
Unexpected finding shows instead of throwing away valuable nutrients, the cells squeeze out every last drop of energy.
Thursday, September 15, 2016
Breast Tumors Evolve in Response to Hormone Therapy
Researchers have suggested that analyzing a single sample of the breast tumor is insufficient for understanding how a patient should best be treated.
Friday, August 12, 2016
Insulin-secreting Cells from Stem Cells
Stem cells from diabetic patients coaxed to become insulin-secreting cells. If damaged cells are replaceable, type 1 diabetics wouldn't need insulin shots.
Wednesday, May 11, 2016
Bacteriophages Demonstrate Vast Diversity
Microbial habitats worldwide likely shaped by RNA viruses that eat bacteria.
Wednesday, March 30, 2016
New Handheld, Pen-Sized Microscope to ID Cancer Cells
Surgeons removing a malignant brain tumor don’t want to leave cancerous material behind. But they’re also trying to protect healthy brain matter and minimize neurological harm.
Thursday, January 28, 2016
New Test May Expand Scope of Liquid Biopsies
The method relies on differences in how DNA is packaged rather than its sequence.
Tuesday, January 19, 2016
New Center Focuses on Regenerative Medicine
A new center has been formed at Washington University School of Medicine in St. Louis to facilitate research that explores the regenerative properties of cells and tissues.
Thursday, December 17, 2015
Uncovering Hard-to-Detect Cancer Mutations
Findings could help identify patients who would benefit from existing drugs.
Wednesday, December 16, 2015
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Wednesday, November 11, 2015
Potent Way to Boost Immunity and Fight Viruses
Findings aid antiviral drug discovery.
Thursday, October 22, 2015
New Test Detects All Viruses
A new test detects virtually any virus that infects people and animals, according to research at Washington University School of Medicine in St. Louis, where the technology was developed.
Thursday, October 01, 2015
New Clues Found to Vision Loss in Macular Degeneration
Scientists have identified a pathway that leads to the formation of atypical blood vessels that can cause blindness in people with age-related macular degeneration.
Thursday, August 13, 2015
Clearance of Key Alzheimer’s Protein Dramatically Slows with Age
Researchers at Washington University School of Medicine in St. Louis have identified some of the key changes in the aging brain that lead to an increased risk of Alzheimer's.
Tuesday, August 11, 2015
Crime-Scene Compound May be Newest Tool in Fight Against Malaria
The compound that detectives spray at crime scenes to find trace amounts of blood may be used one day to kill the malaria parasite.
Monday, August 10, 2015
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
Wednesday, July 29, 2015
Scientific News
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
NIH Study Determines Key Differences between Allergic and Non-Allergic Dust Mite Proteins
Researchers at NIH have uncovered factors that lead to the development of dust mite allergy and assist in the design of better allergy therapies.
New Mechanism of Plant RNA Degradation Identified
Researchers have identified a novel mechanism by which RNA is degraded.
Achieving “Green” Desalination
Workshop explores ways to reduce or eliminate the carbon footprint of seawater desalination plants.
NIH Contributes to Global Effort to Prevent and Manage Lung Diseases
The large scale trial will measure health benefits of clean cookstoves.
Study Finds Key Regulator in Pulmonary Fibrosis
Researchers identify an enzyme that could open the way to therpies for chronic fatal lung disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos