Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nanomedicine Hope for Childhood Cancer

Published: Thursday, November 22, 2012
Last Updated: Thursday, November 22, 2012
Bookmark and Share
Researchers from UNSW's Australian Centre for Nanomedicine have developed a nanoparticle that could improve the effectiveness of chemotherapy for neuroblastoma by a factor of five.

Neuroblastoma is an aggressive childhood cancer that often leaves survivors with lingering health problems due to the high doses of chemotherapy required for treatment. Anything that can potentially reduce these doses is considered an important development.

In a world-first,  the UNSW researchers developed a non-toxic nanoparticle that can deliver and release nitric oxide (NO) to specific cancer cells in the body. The findings of their in vitro experiments have been published in the journal Chemical Communications.

“When we injected the chemo drug into the neuroblastoma cells that had been pre-treated with our new nitric oxide nanoparticle we needed only one-fifth the dose,” says co-author Dr Cyrille Boyer from the School of Chemical Engineering at UNSW.

“By increasing the effectiveness of these chemotherapy drugs by a factor of five, we could significantly decrease the detrimental side-effects to healthy cells and surrounding tissue.”

This synergistic effect between nitric oxide and chemotherapy drugs had previously been reported in other cancer cell lines, but the delivery compounds were potentially toxic and had very poor stability, or shelf life.

In contrast, the UNSW-developed nanoparticle is non-toxic and has a shelf life that has been extended from two days to more than two weeks: “Drug storage is critical and this is a substantial improvement over previous nitric oxide-carrier compounds,” says Boyer.

Nitric Oxide is an important cellular signalling molecule involved in many physical and mental processes, and deficiencies have been associated with heightened susceptibility to cancer, liver fibrosis, diabetes, cardiovascular illnesses and neurodegenerative diseases.

“If we can restore nitric oxide with these nanoparticles this could have implications for all the illnesses associated with NO deficiencies, including diabetes and neurodegenerative,” he says.

The key medical challenge, says Boyer, has been figuring out a way to deliver appropriate doses to specific sites within the body, without provoking an adverse reaction. The Australian Centre for Nanomedicine – which crosses science, engineering and medicine –  is investigating multi-disciplinary solutions.

Boyer says that while biologists have experimented with nitric oxide, mixing it with cancer cells and observing the reactions, “no one has tried to develop a platform to specifically deliver nitric oxide – that is, where you want it, when you want it”.

The next step is to test the nanoparticle on other cell lines, such as lung and colon cancer cells, and to proceed to in vivo tests. The team also included researchers from the Children’s Cancer Institute Australia based at UNSW’s Lowy Cancer Research Centre.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Game Changing’ Stem Cell Repair System
Stem cell therapies capable of regenerating any human tissue damaged by injury, disease or ageing could be available within a few years, following breakthrough research led by UNSW researchers.
Wednesday, April 06, 2016
Nanotech Weapon Against Chronic Bacterial Infections
One of the scourges of hospital infections – biofilms formed by bacteria that stick to living tissue and medical instruments – can be tricked into dispersing with the targeted application of nanoparticles and heat.
Monday, December 21, 2015
'Google Maps' for the Body
Scientists have revealed research that uses previously top-secret technology to zoom through the human body down to the level of a single cell that could be a game-changer for medicine.
Wednesday, July 22, 2015
Why Do Sewers Smell? Chromatography Takes on a Dirty Job
Researchers in Australia have developed a methodology for uncovering exactly what makes sewage stink.
Wednesday, May 20, 2015
Garden Hose A Breeding Ground For Legionnaires’ Disease
The humble backyard hose could be a bacterial breeding ground, providing the ideal conditions for the organisms that cause Legionnaires’ disease to flourish.
Monday, February 23, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!