Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Tiny Probes Shine Brightly to Reveal the Location of Targeted Tissues

Published: Friday, November 23, 2012
Last Updated: Friday, November 23, 2012
Bookmark and Share
Called BRIGHTs, the tiny probes described in the online issue of Advanced Materials, bind to biomarkers of disease and, when swept by an infrared laser, light up to reveal their location.

Tiny as they are, the probes are exquisitely engineered objects: gold nanoparticles covered with molecules called Raman reporters, in turn covered by a thin shell of gold that spontaneously forms a dodecahedron.

The Raman reporters are molecules whose jiggling atoms respond to a probe laser by scattering light at characteristic wavelengths.

The shell and core create an electromagnetic hotspot in the gap between them that boosts the reporters’ emission by a factor of nearly a trillion.

BRIGHTs shine about 1.7 x 1011 more brightly than isolated Raman reporters and about 20 times more intensely than the next-closest competitor probe, says Srikanth Singamaneni, PhD, assistant professor of mechanical engineering and materials science in the School of Engineering & Applied Science at Washington University in St. Louis.

Goosing the signal from Raman reporters

Singamaneni and his postdoctoral research associate Naveen Gandra, PhD, tried several different probe designs before settling on BRIGHTS.

Singamaneni’s lab has worked for years with Raman spectroscopy, a spectroscopic technique that is used to study the vibrational modes (bending and stretching) of molecules. Laser light interacts with these modes and the molecule then emits light at higher or lower wavelengths that are characteristic of the molecule.

Spontaneous Raman scattering, as this phenomenon is called, is by nature very weak, but 30 years ago scientists accidently stumbled on the fact that it is much stronger if the molecules are adsorbed on roughened metallic surfaces. Then they discovered that molecules attached to metallic nanoparticles shine even brighter than those attached to rough surfaces.

The intensity boost from surface-enhanced Raman scattering, or SERS, is potentially huge. “It’s well-known that if you sandwich Raman reporters between two plasmonic materials, such as gold or silver, you are going to see dramatic Raman enhancement,” Singamaneni says.

Originally his team tried to create intense electromagnetic hot spots by sticking smaller particles onto a larger central particle, creating core-satellite assemblies that look like daisies.

“But we realized these assemblies are not ideal for bioimaging,” he says, “because the particles were held together by weak electrostatic interactions and the assemblies were going to come apart in the body.”

Next they tried using something called Click chemistry to make stronger covalent bonds between the satellites and the core.

“We had some success with those assemblies,” Singamaneni says, “but in the meantime we had started to wonder if we couldn’t make an electromagnetic hot spot within a single nanoparticle rather than among particles.

“It occurred to us that if we put Raman reporters between the core and shell of a single particle could we create an internal hotspot.”

That idea worked like a charm.

A rainbow of probes carefully dispensing drugs?

The next step, says Singamaneni, is to test BRIGHTS in vivo in the lab of Sam Achilefu, PhD, professor of radiology in the School of Medicine.

But he’s already thinking of ways to get even more out of the design.

Since different Raman reporter molecules respond at different wavelengths, Singamaneni says, it should be possible to design BRIGHTS targeted to different biomolecules that also have different Raman reporters and then monitor them all simultaneously with the same light probe.

And he and Gandra would like to combine BRIGHTS with a drug container of some kind, so that the containers could be tracked in the body and the drug and released only when it reached the target tissue, thus avoiding many of the side effects patients dread.

Good things, as they say, come in small packages.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cancer Gene Predicts Treatment Response in Leukaemia
Study indicates the patients suffering from a lethal for of acute myeloid leukemia may live longer when receiving milder chemotherapy drugs.
Monday, November 28, 2016
Cause of Inflammation in Diabetes Identified
Suprise discovery has identified a possible trigger of chronic inflammation in diabetes.
Thursday, November 03, 2016
Mutant Plants Reveal Temperature Sensor
Discovery might allow scientists to create crop varieties better suited to warming world.
Monday, October 31, 2016
‘Tracking Bugs’ Reveal Secret of Cancer Cell Metabolism
Unexpected finding shows instead of throwing away valuable nutrients, the cells squeeze out every last drop of energy.
Thursday, September 15, 2016
Breast Tumors Evolve in Response to Hormone Therapy
Researchers have suggested that analyzing a single sample of the breast tumor is insufficient for understanding how a patient should best be treated.
Friday, August 12, 2016
Insulin-secreting Cells from Stem Cells
Stem cells from diabetic patients coaxed to become insulin-secreting cells. If damaged cells are replaceable, type 1 diabetics wouldn't need insulin shots.
Wednesday, May 11, 2016
Bacteriophages Demonstrate Vast Diversity
Microbial habitats worldwide likely shaped by RNA viruses that eat bacteria.
Wednesday, March 30, 2016
New Handheld, Pen-Sized Microscope to ID Cancer Cells
Surgeons removing a malignant brain tumor don’t want to leave cancerous material behind. But they’re also trying to protect healthy brain matter and minimize neurological harm.
Thursday, January 28, 2016
New Test May Expand Scope of Liquid Biopsies
The method relies on differences in how DNA is packaged rather than its sequence.
Tuesday, January 19, 2016
New Center Focuses on Regenerative Medicine
A new center has been formed at Washington University School of Medicine in St. Louis to facilitate research that explores the regenerative properties of cells and tissues.
Thursday, December 17, 2015
Uncovering Hard-to-Detect Cancer Mutations
Findings could help identify patients who would benefit from existing drugs.
Wednesday, December 16, 2015
Single Vaccine for Chikungunya, Related Viruses May be Possible
What if a single vaccine could protect people from infection by many different viruses? That concept is a step closer to reality.
Wednesday, November 11, 2015
Potent Way to Boost Immunity and Fight Viruses
Findings aid antiviral drug discovery.
Thursday, October 22, 2015
New Test Detects All Viruses
A new test detects virtually any virus that infects people and animals, according to research at Washington University School of Medicine in St. Louis, where the technology was developed.
Thursday, October 01, 2015
New Clues Found to Vision Loss in Macular Degeneration
Scientists have identified a pathway that leads to the formation of atypical blood vessels that can cause blindness in people with age-related macular degeneration.
Thursday, August 13, 2015
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Transporting Microscopic Cargo Between Human Cells
Scientists have developed a virus-inspired delivery system for material transport between cells.
Tissue Damage Is Key for Cell Reprogramming
Researchers have shown tissue damage is important for cells to return to an embryonic state for cell reprogramming.
Metabolite Promotes Cancer Cell Transformation
Researchers have identified a metabolite that promotes cancer cell transformation and colorectal cancer spread.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Bird Flu Confirmed in the Netherlands
An outbreak of H5 avian influenza was confirmed in the Flevoland province of the Netherlands.
Pasteurised Bacterium Reduces Obesity and Diabetes
Researchers have discovered that an intestinal bacterium provides a lasting effect on the intestinal barrier.
Turning Off Asthma Attacks
Researchers discover a critical cellular “off” switch for the inflammatory immune response that causes asthma attacks.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!