Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Tiny Probes Shine Brightly to Reveal the Location of Targeted Tissues

Published: Friday, November 23, 2012
Last Updated: Friday, November 23, 2012
Bookmark and Share
Called BRIGHTs, the tiny probes described in the online issue of Advanced Materials, bind to biomarkers of disease and, when swept by an infrared laser, light up to reveal their location.

Tiny as they are, the probes are exquisitely engineered objects: gold nanoparticles covered with molecules called Raman reporters, in turn covered by a thin shell of gold that spontaneously forms a dodecahedron.

The Raman reporters are molecules whose jiggling atoms respond to a probe laser by scattering light at characteristic wavelengths.

The shell and core create an electromagnetic hotspot in the gap between them that boosts the reporters’ emission by a factor of nearly a trillion.

BRIGHTs shine about 1.7 x 1011 more brightly than isolated Raman reporters and about 20 times more intensely than the next-closest competitor probe, says Srikanth Singamaneni, PhD, assistant professor of mechanical engineering and materials science in the School of Engineering & Applied Science at Washington University in St. Louis.

Goosing the signal from Raman reporters

Singamaneni and his postdoctoral research associate Naveen Gandra, PhD, tried several different probe designs before settling on BRIGHTS.

Singamaneni’s lab has worked for years with Raman spectroscopy, a spectroscopic technique that is used to study the vibrational modes (bending and stretching) of molecules. Laser light interacts with these modes and the molecule then emits light at higher or lower wavelengths that are characteristic of the molecule.

Spontaneous Raman scattering, as this phenomenon is called, is by nature very weak, but 30 years ago scientists accidently stumbled on the fact that it is much stronger if the molecules are adsorbed on roughened metallic surfaces. Then they discovered that molecules attached to metallic nanoparticles shine even brighter than those attached to rough surfaces.

The intensity boost from surface-enhanced Raman scattering, or SERS, is potentially huge. “It’s well-known that if you sandwich Raman reporters between two plasmonic materials, such as gold or silver, you are going to see dramatic Raman enhancement,” Singamaneni says.

Originally his team tried to create intense electromagnetic hot spots by sticking smaller particles onto a larger central particle, creating core-satellite assemblies that look like daisies.

“But we realized these assemblies are not ideal for bioimaging,” he says, “because the particles were held together by weak electrostatic interactions and the assemblies were going to come apart in the body.”

Next they tried using something called Click chemistry to make stronger covalent bonds between the satellites and the core.

“We had some success with those assemblies,” Singamaneni says, “but in the meantime we had started to wonder if we couldn’t make an electromagnetic hot spot within a single nanoparticle rather than among particles.

“It occurred to us that if we put Raman reporters between the core and shell of a single particle could we create an internal hotspot.”

That idea worked like a charm.

A rainbow of probes carefully dispensing drugs?

The next step, says Singamaneni, is to test BRIGHTS in vivo in the lab of Sam Achilefu, PhD, professor of radiology in the School of Medicine.

But he’s already thinking of ways to get even more out of the design.

Since different Raman reporter molecules respond at different wavelengths, Singamaneni says, it should be possible to design BRIGHTS targeted to different biomolecules that also have different Raman reporters and then monitor them all simultaneously with the same light probe.

And he and Gandra would like to combine BRIGHTS with a drug container of some kind, so that the containers could be tracked in the body and the drug and released only when it reached the target tissue, thus avoiding many of the side effects patients dread.

Good things, as they say, come in small packages.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
Wednesday, July 29, 2015
Midlife Changes in Alzheimer’s Biomarkers May Predict Dementia
Studying brain scans and cerebrospinal fluid of healthy adults, scientists have shown that changes in key biomarkers of Alzheimer's disease during midlife may help identify those who will develop dementia years later, according to new research.
Tuesday, July 07, 2015
Stem Cells Lurking In Tumors Can Resist Treatment
Researchers at Washington University School of Medicine in St. Louis are studying how cancer stem cells make tumors harder to kill and are looking for ways to eradicate these treatment-resistant cells.
Monday, March 16, 2015
Breast Cancer Vaccine Shows Promise In Small Clinical Trial
A breast cancer vaccine designed by researchers at Washington University School of Medicine in St. Louis is safe in patients with metastatic breast cancer.
Tuesday, December 02, 2014
$8 Million to Study Gene-Lifestyle Interactions on Heart Health
Four-year grant will support the first large-scale, multiethnic statistical analysis of risk factors for cardiovascular disease.
Wednesday, April 09, 2014
Protein that Delays Cell Division in Bacteria may Lead to the Identification of New Antibiotics
Scientists have worked out how two bacterial strains delay cell division when food is abundant.
Thursday, August 15, 2013
Unusual Comparison Nets New Sleep Loss Marker
Paul Shaw, PhD, a researcher at Washington University School of Medicine in St. Louis, uses what he learns in fruit flies to look for markers of sleep loss in humans.
Wednesday, May 08, 2013
Altering Eye Cells May One Day Restore Vision
Doctors may one day treat some forms of blindness by altering the genetic program of the light-sensing cells of the eye.
Wednesday, January 30, 2013
Study Offers Clues to Cause of Kids’ Brain Tumors
Insights from a genetic condition that causes brain cancer are helping scientists better understand the most common type of brain tumor in children.
Tuesday, November 20, 2012
$4.7 Million Study Looks at Why Diabetes Makes Heart Disease Worse
Washington University researchers receives a $4.7 million grant from NHLBI.
Wednesday, July 18, 2012
Amyloid Deposits in Cognitively Normal People may Predict Risk for Alzheimer's Disease
The studies linked higher amounts of the protein deposits in dementia-free people with greater risk for developing the disease.
Wednesday, December 16, 2009
Scientific News
Study Finds Brain Chemicals that Keep Wakefulness in Check
Researchers to develop new drugs that promote better sleep, or control hyperactivity in people with mania.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!