Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Mechanism to Repair Clumped Proteins Explained

Published: Friday, November 23, 2012
Last Updated: Friday, November 23, 2012
Bookmark and Share
Heidelberg researchers uncover the function of specific molecular chaperones.

Clumped proteins can be dissolved with the aid of cellular repair systems – a process of critical importance for cell survival especially under conditions of stress. Heidelberg researchers have now decrypted the fundamental mechanism for dissolving protein aggregates that involves specific molecular chaperones. Scientists from the Center for Molecular Biology of Heidelberg University and the German Cancer Research Center cooperated with experts from the Heidelberg Institute for Theoretical Studies on the project. The results of the research appeared in two simultaneously published articles in “Nature Structural & Molecular Biology”.

Proteins consist of long chains of successive amino acids and perform vital functions in every cell. To function, every amino acid chain must first assume a specific three-dimensional structure – it has to fold itself. A change in growth conditions, such as an increase in ambient temperature, can cause proteins to lose their structure and unfold. Unfolded protein chains run the risk of clumping, forming protein aggregates. “If such aggregates form, the proteins cannot function, which can lead to cell death, which we see in neurodegenerative diseases such as Alzheimer’s and Parkinson’s, and even in ageing processes”, explains Prof. Dr. Bernd Bukau, Director of the Center for Molecular Biology of Heidelberg University (ZMBH), who is also a researcher at the German Cancer Research Center (DKFZ).

But clumping does not necessarily mean the end of a protein’s life cycle. “Cells have repair systems for damaged proteins, so-called molecular chaperones, that can dissolve even aggregated proteins and refold them”, clarifies Dr. Axel Mogk, also a member of the ZMBH and DKFZ. The repair is carried out by a cooperating team of two chaperones, called Hsp70 and Hsp100. The Heidelberg researchers were able to demonstrate that the activity of the Hsp100 chaperone is regulated by a built-in molecular switch.

This switch is first positioned to curtail energy consumption, i.e. ATP hydrolysis, and thereby the activity of the Hsp100 chaperone. The cooperating Hsp70 protein changes the position of the switch and activates Hsp100 directly at the protein aggregate. In this state, the “motor” of the ring-shaped Hsp100 protein runs at full speed, reaches top performance and is able to extract individual chains from the aggregate. Afterwards, the extracted, unfolded protein can start the folding process over. The results of the Heidelberg research also show that the built-in switch’s control of Hsp100 activity is of vital importance for this complicated protein machine, because the loss of regulation in hyperactive, i.e. permanently activated, Hsp100 protein variants leads to cell death.

The research collaboration falls under the DKFZ-ZMBH Alliance, the strategic cooperation of the German Cancer Research Center and the Center for Molecular Biology of Heidelberg University. The Heidelberg Institute for Theoretical Studies (HITS) develops new theoretical approaches to interpreting the burgeoning amount of experimental data.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Battery Component Found to Harm Key Soil Microorganism
The material at the heart of the lithium ion batteries that power electric vehicles, laptop computers and smartphones has been shown to impair a key soil bacterium, according to new research.
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!