Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Methylome Modifications Offer New Measure of our “Biological” Age

Published: Monday, November 26, 2012
Last Updated: Monday, November 26, 2012
Bookmark and Share
Women live longer than men. Individuals can appear or feel years younger – or older – than their chronological age. Diseases can affect our aging process. When it comes to biology, our clocks clearly tick differently.

In a new study, researchers at the University of California, San Diego School of Medicine, with colleagues elsewhere, describe markers and a model that quantify how aging occurs at the level of genes and molecules, providing not just a more precise way to determine how old someone is, but also perhaps anticipate or treat ailments and diseases that come with the passage of time.

The findings are published in the November 21 online issue of the journal Molecular Cell.

“It’s well known that people age at different rates,” said Kang Zhang, MD, PhD, professor of ophthalmology and human genetics at the Shiley Eye Center and director of the Institute for Genomic Medicine, both at UC San Diego. “Some people in their 70s look like they’re in their 50s, while others in their 50s look like they’re in their 70s.”

However, identifying markers and precisely quantifying the actual rate of aging in individuals has been challenging. For example, researchers have looked at telomeres – repeating nucleotide sequences that cap the ends of chromosomes and which shorten with age – but have found that other factors like stress can affect them as well.

In the new Molecular Cell paper, Zhang and colleagues focus on DNA methylation, a fundamental, life-long process in which a methyl group is added or removed from the cytosine molecule in DNA to promote or suppress gene activity and expression. The researchers measured more than 485,000 genome-wide methylation markers in blood samples of 656 persons ranging in age from 19 to 101.

“It’s a very robust way of predicting aging,” said Zhang, one that was subsequently validated on a second sampling of several hundred blood samples from another cohort of human individuals.

The scientists found that an individual’s “methylome” – the entire set of human methylation markers and changes across a whole genome – predictably varies over time, providing a way to determine a person’s actual biological age from just a blood sample.

“It’s the majority of the methylome that accurately predicts age, not just a few key genes,” said co-senior author Trey Ideker, PhD, a professor of medicine and chief of the Division of Medical Genetics in the UC San Diego School of Medicine and professor of bioengineering in the Jacobs School of Engineering. “The methylation state decays over time along the entire genome. You look in the body, into the cells, of young people and methylation occurs very distinctly in some spots and not in others. It’s very structured. Over time, though, methylation sites get fuzzier; the boundaries blur.”

They do not, however, blur at the same rate in everybody. At the molecular level of the methylome, the researchers said it was clear that individual bodies age at varying rates, and even within the same body, different organs age differently. Moreover, cancer cells age differently than their surrounding normal cells.  The findings, according to the study authors, have broad practical implications. Most immediately, they could be used in forensics to determine a person’s age based only upon a blood or tissue sample.

More profoundly, said Zhang, the methylome provides a measure of biological age – how quickly or slowly a person is experiencing the passage of time. That information has potentially huge medical import. “For example, you could serially profile patients to compare therapies, to see if a treatment is making people healthier and ‘younger.’ You could screen compounds to see if they retard the aging process at the tissue or cellular level.”

Ideker said assessing an individual’s methylome state could improve preventive medicine by identifying lifestyle changes that might slow molecular aging. He noted, however, that much more research remains to be done.

“The next step is to look to see whether methylation can predict specific health factors, and whether this kind of molecular diagnosis is better than existing clinical or physical markers. We think it’s very promising,” Ideker said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
Scientific News
Criminal Justice Alcohol Program Linked to Decreased Mortality
Institute has announced that in the criminal justice alcohol program deaths dropped by 4.2 percent over six years.
Head Injury Patients have Protein Clumps Associated with Alzheimer’s Disease
Scientists have revealed that protein clumps associated with Alzheimer's disease are also found in the brains of people who have had a head injury.
Exposure to Air Pollution 30 Years Ago Associated with Increased Risk of Death
Exposure to air pollution more than 30 years ago may still affect an individual's mortality risk today, according to new research from Imperial College London.
More Then 1 in 20 U.S. Children have Dizziness and Balance Problems
Researchers at NIH have found that girls have a higher prevalence of dizziness and balance problems compared to boys, 5.7 percent and 5.0 percent.
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Low-Cost, Portable NQR Spectroscopy
A researcher at Case Western Reserve University is developing a low-cost, portable prototype designed to detect tainted medicines and food supplements that otherwise can make their way to consumers. The technology can authenticate good medicines and supplements.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Spero Therapeutics Announces $30 Million Series B Preferred Financing
Company has announced financing of $30 million to support development of novel therapies to treat gram-negative bacterial infections.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!