Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Methylome Modifications Offer New Measure of our “Biological” Age

Published: Monday, November 26, 2012
Last Updated: Monday, November 26, 2012
Bookmark and Share
Women live longer than men. Individuals can appear or feel years younger – or older – than their chronological age. Diseases can affect our aging process. When it comes to biology, our clocks clearly tick differently.

In a new study, researchers at the University of California, San Diego School of Medicine, with colleagues elsewhere, describe markers and a model that quantify how aging occurs at the level of genes and molecules, providing not just a more precise way to determine how old someone is, but also perhaps anticipate or treat ailments and diseases that come with the passage of time.

The findings are published in the November 21 online issue of the journal Molecular Cell.

“It’s well known that people age at different rates,” said Kang Zhang, MD, PhD, professor of ophthalmology and human genetics at the Shiley Eye Center and director of the Institute for Genomic Medicine, both at UC San Diego. “Some people in their 70s look like they’re in their 50s, while others in their 50s look like they’re in their 70s.”

However, identifying markers and precisely quantifying the actual rate of aging in individuals has been challenging. For example, researchers have looked at telomeres – repeating nucleotide sequences that cap the ends of chromosomes and which shorten with age – but have found that other factors like stress can affect them as well.

In the new Molecular Cell paper, Zhang and colleagues focus on DNA methylation, a fundamental, life-long process in which a methyl group is added or removed from the cytosine molecule in DNA to promote or suppress gene activity and expression. The researchers measured more than 485,000 genome-wide methylation markers in blood samples of 656 persons ranging in age from 19 to 101.

“It’s a very robust way of predicting aging,” said Zhang, one that was subsequently validated on a second sampling of several hundred blood samples from another cohort of human individuals.

The scientists found that an individual’s “methylome” – the entire set of human methylation markers and changes across a whole genome – predictably varies over time, providing a way to determine a person’s actual biological age from just a blood sample.

“It’s the majority of the methylome that accurately predicts age, not just a few key genes,” said co-senior author Trey Ideker, PhD, a professor of medicine and chief of the Division of Medical Genetics in the UC San Diego School of Medicine and professor of bioengineering in the Jacobs School of Engineering. “The methylation state decays over time along the entire genome. You look in the body, into the cells, of young people and methylation occurs very distinctly in some spots and not in others. It’s very structured. Over time, though, methylation sites get fuzzier; the boundaries blur.”

They do not, however, blur at the same rate in everybody. At the molecular level of the methylome, the researchers said it was clear that individual bodies age at varying rates, and even within the same body, different organs age differently. Moreover, cancer cells age differently than their surrounding normal cells.  The findings, according to the study authors, have broad practical implications. Most immediately, they could be used in forensics to determine a person’s age based only upon a blood or tissue sample.

More profoundly, said Zhang, the methylome provides a measure of biological age – how quickly or slowly a person is experiencing the passage of time. That information has potentially huge medical import. “For example, you could serially profile patients to compare therapies, to see if a treatment is making people healthier and ‘younger.’ You could screen compounds to see if they retard the aging process at the tissue or cellular level.”

Ideker said assessing an individual’s methylome state could improve preventive medicine by identifying lifestyle changes that might slow molecular aging. He noted, however, that much more research remains to be done.

“The next step is to look to see whether methylation can predict specific health factors, and whether this kind of molecular diagnosis is better than existing clinical or physical markers. We think it’s very promising,” Ideker said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Thursday, December 08, 2016
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Monday, October 24, 2016
Zika Virus Infection Alters Human and Viral RNA
Researchers have discovered that Zika infections results in human and viral genetic modification.
Monday, October 24, 2016
Genome Sequencing May Help Avert Banana Armageddon
Researchers at the University of California, Davis, and in the Netherlands have discovered how three fungal diseases have evolved into a lethal threat to the world’s bananas.
Friday, August 12, 2016
‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Tuesday, May 31, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Forensic 3D Documentation of Skin Injuries
In this study, the validity of using photogrammetry for documenting injuries in a pathological context was demonstrated.
3-D Printed Dog’s Nose Improves Vapor Detection
By mimicking how dogs get their whiffs, a team of government and university researchers have demonstrated that “active sniffing” can improve by more than 10 times the performance of current technologies that rely on continuous suction to detect trace amounts of explosives and other contraband.
New Markers for Forensic Body-fluid Identification
University of Bonn researchers have successfully identified specific Micro-RNA signatures to help forensically identify body fluids.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!