Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Short DNA Strands in the Genome May be Key to Understanding Human Cognition and Diseases

Published: Monday, November 26, 2012
Last Updated: Monday, November 26, 2012
Bookmark and Share
Previously discarded, human-specific “junk” DNA represents untapped resource in the study of diseases like Alzheimer’s and autism.

Short snippets of DNA found in human brain tissue provide new insight into human cognitive function and risk for developing certain neurological diseases, according to researchers from the Departments of Psychiatry and Neuroscience at Mount Sinai School of Medicine. The findings are published in the November 20th issue of PLoS Biology.

There are nearly 40 million positions in the human genome with DNA sequences that are different than those in non-human primates, making the task of learning which are important and which are inconsequential a challenge for scientists. Rather than comparing these sequences strand by strand, Schahram Akbarian, MD, PhD, Professor of Psychiatry and Neuroscience at Mount Sinai School of Medicine, wanted to identify the crucial set of differences between the two genomes by looking more broadly at the chromatin, the structure that packages the DNA and controls how it is expressed.

They found hundreds of regions throughout the human genome which showed a markedly different chromatin structure in neurons in the prefrontal cortex, a brain region that controls complex emotional and cognitive behavior, compared to non-human primates. The findings of the study provide important insights for diseases that are unique to humans such as Alzheimer's disease and autism.

"While mapping the human genome has taught us a great deal about human biology, the emerging field of epigenomics may help us identify previously overlooked or discarded sequences that are key to understanding disease," said Dr. Akbarian. "We identified hundreds of loci that represent untapped areas of study that may have therapeutic potential."

Dr. Akbarian and his research team isolated small snippets of chromatin fibers from the prefrontal cortex. Next, they analyzed these snippets to determine what genetic signals they were expressing. Many of the sequences with human-specific epigenetic characteristics were, until recently, considered to be "junk DNA" with no particular function.

Now, they present new leads on how the human brain has evolved, and a starting point for studying neurological diseases. For example, the sequence of DPP10—a gene critically important for normal human brain development—not only showed distinct human-specific chromatin structures different from other primate brains such as the chimpanzee or the macaque, but the underlying DNA sequence showed some interesting differences from two extinct primates—the Neanderthal and Denisovan, most closely related to our own species and also referred to as ‘archaic hominins'.

"Many neurological disorders are unique to human and are very hard as a clinical syndrome to study in animals, such as Alzheimer's disease, autism, and depression," said Dr. Akbarian. "By studying epigenetics we can learn more about those unique pieces of the human genome."

The research team also discovered that several of these chromatin regions appear to physically interact with each other inside the cell nucleus, despite being separated by hundreds of thousands of DNA strands on the genome. This phenomenon of "chromatin looping" appears to control the expression of neighboring genes, including several with a critical role for human brain development.

"There is growing consensus among genome researchers that much of what was previously considered as ‘junk sequences' in our genomes indeed could play some sort of regulatory role," said Dr. Akbarian.

This study was supported by grants from the National Institutes of Health. Dr. Akbarian plans to do more epigenetic studies in other areas of the brain to see if there are additional chromatin regions that are unique to humans. They also plan to study the epigenomes of other mammals with highly evolved social behaviors such as elephants.

Dr. Akbarian joined Mount Sinai in July 2012. He is internationally known for his cutting-edge research on the epigenetic mechanisms of psychiatric disorders. He is a widely recognized expert in advanced chromatin tools—many of which were developed in his laboratory—in conjunction with mouse mutagenesis and behavioral models of mental illness to bridge molecular, cellular, and behavioral investigations. He is also a renowned authority on the epigenetic analysis of human brain tissue examined postmortem.

Prior to joining Mount Sinai, Dr. Akbarian was Director of the Brudnick Neuropsychiatric Research Institute. He received his medical and doctorate degrees from the Freie Universitaet Berlin. Dr. Akbarian completed his postdoctoral training in neuroscience at the University of California at Irvine and the Whitehead Institute, and his residency in psychiatry at Massachusetts General Hospital.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Identify First Drug Targets in Childhood Genetic Tumor Disorder
Genetic mutations may be targeted by currently available cancer therapies.
Wednesday, May 29, 2013
Mount Sinai Researchers Unveil New Chemotherapy-Resistant Cancer Stem Cell
Scientists have discovered cells that display cancer stem cell properties and resistance to chemotherapy, and participate in tumor progression.
Wednesday, September 12, 2012
Mount Sinai Researchers Develop Safe and Effective Gene Therapy to Treat Severe Heart Failure
New gene therapy developed at Mount Sinai, shows clinical benefit in treating people with advanced heart failure in a Phase II clinical trial.
Monday, July 11, 2011
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
Investigating the Vape
Expert independent review concludes that e-cigarettes have potential to help smokers quit.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Researchers Discover Synthesis of a New Nanomaterial
Interdisciplinary team creates biocomposite for first time using physiological conditions.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!