Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scanning Innovation can Improve Personalized Medicine

Published: Wednesday, November 28, 2012
Last Updated: Wednesday, November 28, 2012
Bookmark and Share
New combinations of medical imaging technologies hold promise for improved early disease screening, cancer staging, therapeutic assessment, and other aspects of personalized medicine.

The following research by Ge Wang, director of Virginia Tech's Center for Biomedical Imaging is documented in a recent paper that appeared in the refereed journal PLoS One.

The integration of multiple major tomographic scanners into a single framework "is a new way of thinking in the biomedical imaging world" and is evolving into a "grand fusion" of many imaging modalities known as "omni-tomography," explained Wang, the lead author of the article.

Wang has a history of "firsts" in the imaging world, including the first paper on spiral multi-slice/cone-beam (computed tomography) CT in 1991, on bioluminescence tomography in 2004, and on interior tomography in 2007.

"The holy grail of biomedical imaging is an integrated system capable of producing tomographic, simultaneous, dynamic observations of highly complex biological phenomena in vivo," Wang said.

Currently, dual-modality imaging such as a positron emission tomography and magnetic resonance imaging (PET/MRI) is "a powerful example of the synergy provided" by using the two as a hybrid technology when assessing concerns in oncology and cardiology, Wang said. "There are no longer any lone PET scanners. Today all are coupled with computed tomography scanners," added Wang.

For the past decade, Wang and his colleagues have investigated approaches to fusing the various scanning techniques. Recently, they became interested in going beyond the dual-mode imaging, and found that the enabling technology for omni-tomography is "interior tomography" that allows for the integration of multiple major tomographic scanners into one architecture.

He explained that many of the real-world problems in cancer or heart disease are localized or often observed in a relatively small region of interest (ROI) in a human body. In order to obtain a theoretically exact reconstruction of this small area, Wang and others have shown that by using some prior knowledge and common properties on an ROI, they can precisely reconstruct the ROI from data collected with a narrow X-ray beam just covering the ROI.

"We call this novel approach `interior tomography'," Wang added. "In our latest work, we elevated interior tomography from its origin in X-ray CT to a general tomographic imaging principle, and demonstrated its validity for different tomographic modalities including single-photon emission computed tomography (SPECT), MRI, and phase-contrast tomography," Wang said.

Because interior tomographic imaging can be theoretically exact and practically informative for each of all the major imaging modalities, it becomes feasible to make each scanner "slimmer" or more compact. This compression creates the necessary room to put all of the involved tomographic modalities tightly together in space, and operates them in parallel, achieving space and time synchrony. "It is necessary to depict complicated correlative relationships among diversified physiological features," Wang further explained.

The potential clinical applications for omni-tomography may improve personalized medicine. "As an example enabled by interior tomography, an interior CT-MRI scanner can target the fast-beating heart for registration of functions and structures, delivery of drugs or stem cells, and guidance of complicated procedures such as heart valve replacement," Wang said.

Omni-tomography as a unified technology "also gives leverage to a greatly reduced radiation dose when MRI-aided interior CT reconstruction is implemented," Wang asserted. On the other hand, "it can generate higher-resolution details in MRI images."

The reduction in radiation dosage is a hot topic in the CT field.  Medical X-rays, in use for more than 100 years, only accounted for about 10 percent of the total American radiation exposure in the late 1980s. The subsequent growth of the use of various medical X-ray imaging methods now accounts for approximately half of the total radiation exposure of the U.S. population.

"Omni-tomography is a promising direction for biomedical imaging and systems biomedicine," Wang said. Wang's team efforts are related to the Physiome Project, a worldwide undertaking to understand an individual's physiological state from the genome scale to complex organisms in a systematic fashion. This project supports a worldwide repository of models and data sets and is an integral part of systems medicine. "Biomedical imaging is instrumental for the Physiome Project, and especially so could be omni-tomography," Wang added.

This work was funded partially by the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering grant EBO11785 and National Institutes of Health/National Heart, Lung, and Blood Institute grant HLO98912.

The co-authors of the paper who are affiliated with the Virginia Tech -- Wake Forest University School of Biomedical Engineering and Sciences include: Hengyong Yu, Wenxiang Cong, Haiou Shen, James Bennett, Mark Furth, and Yue Wang.

The other collaborators include: Jie Zhang of the University of Kentucky, Hao Gao of the University of California Los Angeles, Victor Weir of the Baylor Health Care System, Xiaochen Xu of Texas Instruments Inc., and Michael Vannier of the University of Chicago.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Wednesday, July 29, 2015
Compound To Combat Malaria Parasite Identified
Study identifies non-mevalonate pathway for isoprenoid biosynthesis as key antimalarial drug target.
Tuesday, May 05, 2015
Superior Ability To Rapidly Detect Volatile Organic Compounds
Researchers develop a credit-card-sized gas chromatography platform that can analyze volatile compounds within seconds.
Wednesday, April 22, 2015
Genome-Editing Tool Bolsters Efforts To Thwart 'Deadliest' Animal
Researchers at the Fralin Life Sciences Institute have turbocharged a red-hot new technology to make it more efficient to make changes in mosquito genetics.
Tuesday, March 17, 2015
Elucidating Odor Properties of Elk River Contaminants
Virginia Tech researchers utilized olfactory gas chromatography to pinpoint the concentrations of contaminants in the air.
Tuesday, April 01, 2014
Virginia Tech Scientist Proposes Revolutionary Naming System for All Life on Earth
Boris Vinatzer has developed a new way to classify and name organisms based on genome sequencing.
Wednesday, February 26, 2014
Researchers Discover Evidence to Support Theory of 'Buckyball' Formation
Researchers have reported the first experimental evidence that supports the theory that a soccer ball-shaped nanoparticle is the result of a breakdown of larger structures.
Tuesday, September 24, 2013
Psychiatric Disorders Linked to a Protein Involved in the Formation of Long-Term Memories
Researchers have discovered a pathway by which the brain controls a molecule critical to forming long-term memories and connected with bipolar disorder and schizophrenia.
Tuesday, June 25, 2013
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!