Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Identify Protein Key in Proliferation of Lymphoma Cells

Published: Thursday, November 29, 2012
Last Updated: Wednesday, November 28, 2012
Bookmark and Share
Inhibiting PERK protein could reduce formation of cancerous tumors.

A team of researchers from UCSF and the University of Pennsylvania has uncovered how a normal biological mechanism called the “unfolded protein response,” goes awry in human lymphoma - work that may lead to the development of specific drugs to fight different forms of cancer.

The unfolded protein response is something of a safety self-destruct valve - it protects against the potential toxicity of unfolded proteins by causing cells in which they accumulate to harmlessly implode. But during the development of lymphoma, it can also cause cells to proliferate.

Led by Davide Ruggero, PhD, a UCSF associate professor of urology, and Constantinos Koumenis, PhD, from the Perelman School of Medicine at the University of Pennsylvania, the team showed how the unfolded protein response works in patients with human lymphomas and mice genetically bred to develop lymphomas. Instead of pushing the cancer cells toward self-destruction, it nudges them toward survival.

The work, described in an article published online recently by the Journal of Clinical Investigation, provides researchers with potential new targets for new drugs to fight cancer.

Specifically, they identified a human protein called PERK, which plays a central role in unfolded protein response. They showed that inhibiting PERK reduces the formation of tumors.

The research team also uncovered a main contributor to PERK activation: the activity of a cancer-related gene called c-Myc, which paradoxically switches on both cell proliferation and death. When the cell becomes cancerous, c-Myc–induced death is bypassed, promoting tumor formation.

“A critical feature of c-Myc-overexpressing cells is an increased rate of protein synthesis that is essential for Myc’s ability to cause cancer,” says Tom Cunningham, PhD, a postdoctoral fellow in the Ruggero lab.

“Myc tumor cells use this aberrant production of proteins to block apoptosis [programmed cell death] and activate the unfolded protein response. These cancer cells depend on Myc-induced increases in protein abundance to survive,” said Ruggero.

Targeting protein synthesis downstream of Myc oncogenic activity may represent a promising new therapeutic window for cancer treatment, he added.

PERK is already an active target for drug design in academia and the pharmaceutical industry, but any drugs that are developed against it will have to undergo clinical trials for safety and effectiveness before they are approved by the U.S. Food and Drug Administration and commonly available as human patient therapies.

“Although data from our lab and other groups suggest that PERK inhibition in tumors grown in animals is feasible, other studies suggest that PERK plays a critical role in the function of secretory tissues such as the pancreas,” said Koumenis.

Koumenis continued, “Carefully testing the effects of new PERK inhibitors in animal models of lymphoma and other malignancies in the next couple of years should address this question and could open the way for new clinical trials with such agents.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Go-Between Immune Cell is Key to Priming the Body’s Fight Against Cancer
‘Antigen-presenting cell’ activates T cells by alerting them to the presence of tumors.
Friday, July 15, 2016
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Friday, June 24, 2016
Tarantula Toxins Offer Key Insights Into Neuroscience of Pain
Toxins extracted from ornamental baboon tarantula may be used as tools to study disorders ranging from irritable bowel syndrome to epilepsy.
Tuesday, June 07, 2016
Cirrhosis-Causing Cells Converted to Healthy Liver Cells in Mice
New approach that repairs liver from within may be more efficient than cell transplants.
Friday, June 03, 2016
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Friday, May 27, 2016
Immune System Implicated in Gastroschisis
UCSF researchers show that the immune system is implicated in gastroschisis. The findings could lead to improved treatments for the belly birth defect.
Tuesday, May 17, 2016
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
Tuesday, April 26, 2016
Tense Tumours Lead to Poorer Prognosis
UCSF researchers have discovered that the chances of survival for patients with pancreatic adenocarcinoma (PDAC) — the most common type of pancreatic cancer — may depend in part on how tense their tumors are.
Tuesday, April 19, 2016
Gene Behind Rare Childhood Syndrome Identified
Online activism by one patient’s mother spurred research collaboration which led to the identification of a new genetic syndrome.
Friday, April 15, 2016
UCSF Immunologist to Head New Parker Institute for Cancer Immunotherapy
Renowned UC San Francisco immunologist Jeffrey Bluestone, PhD, has been named president and CEO of the Parker Institute for Cancer Immunotherapy, a national initiative launched with a $250 million grant from The Parker Foundation.
Thursday, April 14, 2016
How The Bat Got Its Wings
Finding may provide clues to human limb development and malformations.
Wednesday, March 30, 2016
Tricked-Out Immune Cells Could Attack Cancer
New cell-engineering technique may lead to precision immunotherapies.
Wednesday, February 03, 2016
MedImmune, UCSF Launch Collaboration
Top scientists partner to research the progression and biology of RIA diseases.
Thursday, January 14, 2016
Agricultural Intervention Improves HIV Outcomes
A multifaceted farming intervention can reduce food insecurity while improving HIV outcomes in patients in Kenya, according to a randomized, controlled trial led by researchers at UC San Francisco.
Thursday, August 20, 2015
How Early Childhood Vaccination Reduces Leukemia Risk
Chronic infections push ‘pre-leukemia’ cells, common in newborns, into malignancy.
Thursday, May 21, 2015
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
JPK NanoWizard® Applied to a Wide Range of Research
The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Protein Boosts Rice Yield by 54%
Over-expression of a natural protein in rice plants led to a 54% increase in crop yield and 40% increase in nitrogen-use efficiency.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Soil Nitrogen Age Important for Precision Agriculture
Calculating the age of nitrogen in corn and soybean fields could lead to improved fertilizer application techniques.
Targeting Autoimmunity
Researchers have developed a strategy to treat a rare autoimmune disease which could lead to treatments of other autoimmune diseases.
Molecule May Affect Gaucher, Parkinson's Disease
Research has identified a molecule that restores activity of a dysfunctional enzyme linked to Gaucher and Parkinson's disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!