Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Identify Protein Key in Proliferation of Lymphoma Cells

Published: Thursday, November 29, 2012
Last Updated: Wednesday, November 28, 2012
Bookmark and Share
Inhibiting PERK protein could reduce formation of cancerous tumors.

A team of researchers from UCSF and the University of Pennsylvania has uncovered how a normal biological mechanism called the “unfolded protein response,” goes awry in human lymphoma - work that may lead to the development of specific drugs to fight different forms of cancer.

The unfolded protein response is something of a safety self-destruct valve - it protects against the potential toxicity of unfolded proteins by causing cells in which they accumulate to harmlessly implode. But during the development of lymphoma, it can also cause cells to proliferate.

Led by Davide Ruggero, PhD, a UCSF associate professor of urology, and Constantinos Koumenis, PhD, from the Perelman School of Medicine at the University of Pennsylvania, the team showed how the unfolded protein response works in patients with human lymphomas and mice genetically bred to develop lymphomas. Instead of pushing the cancer cells toward self-destruction, it nudges them toward survival.

The work, described in an article published online recently by the Journal of Clinical Investigation, provides researchers with potential new targets for new drugs to fight cancer.

Specifically, they identified a human protein called PERK, which plays a central role in unfolded protein response. They showed that inhibiting PERK reduces the formation of tumors.

The research team also uncovered a main contributor to PERK activation: the activity of a cancer-related gene called c-Myc, which paradoxically switches on both cell proliferation and death. When the cell becomes cancerous, c-Myc–induced death is bypassed, promoting tumor formation.

“A critical feature of c-Myc-overexpressing cells is an increased rate of protein synthesis that is essential for Myc’s ability to cause cancer,” says Tom Cunningham, PhD, a postdoctoral fellow in the Ruggero lab.

“Myc tumor cells use this aberrant production of proteins to block apoptosis [programmed cell death] and activate the unfolded protein response. These cancer cells depend on Myc-induced increases in protein abundance to survive,” said Ruggero.

Targeting protein synthesis downstream of Myc oncogenic activity may represent a promising new therapeutic window for cancer treatment, he added.

PERK is already an active target for drug design in academia and the pharmaceutical industry, but any drugs that are developed against it will have to undergo clinical trials for safety and effectiveness before they are approved by the U.S. Food and Drug Administration and commonly available as human patient therapies.

“Although data from our lab and other groups suggest that PERK inhibition in tumors grown in animals is feasible, other studies suggest that PERK plays a critical role in the function of secretory tissues such as the pancreas,” said Koumenis.

Koumenis continued, “Carefully testing the effects of new PERK inhibitors in animal models of lymphoma and other malignancies in the next couple of years should address this question and could open the way for new clinical trials with such agents.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Cellbots’ Chase Down Cancer, Deliver Drugs Directly to Tumors
Programmable T cells shown to be versatile, precise, and powerful in lab studies.
Friday, September 30, 2016
Newborn Gut Microbiome Predicts Later Allergy and Asthma
Microbial byproducts link particular early-life gut microbes to immune dysfunction.
Wednesday, September 14, 2016
NASA's DNA Sequencing in Space is a Success
DNA has been sequenced in space for the first time ever for the Biomolecule Sequencer investigation, using the MinION sequencing device.
Wednesday, August 31, 2016
Some Breast Cancer Patients With Low Genetic Risk Could Skip Chemotherapy
Genetic test can help predict survival and guide treatment options.
Friday, August 26, 2016
Immune-Cell Population Predicts Immunotherapy Response in Melanoma
All patients with high levels of one immune-cell type responded to treatment.
Tuesday, August 16, 2016
Gene Variant Explains Differences in Diabetes Drug Response
International precision medicine study advances understanding of the biology of Metformin.
Thursday, August 11, 2016
Go-Between Immune Cell is Key to Priming the Body’s Fight Against Cancer
‘Antigen-presenting cell’ activates T cells by alerting them to the presence of tumors.
Friday, July 15, 2016
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Friday, June 24, 2016
Tarantula Toxins Offer Key Insights Into Neuroscience of Pain
Toxins extracted from ornamental baboon tarantula may be used as tools to study disorders ranging from irritable bowel syndrome to epilepsy.
Tuesday, June 07, 2016
Cirrhosis-Causing Cells Converted to Healthy Liver Cells in Mice
New approach that repairs liver from within may be more efficient than cell transplants.
Friday, June 03, 2016
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Friday, May 27, 2016
Immune System Implicated in Gastroschisis
UCSF researchers show that the immune system is implicated in gastroschisis. The findings could lead to improved treatments for the belly birth defect.
Tuesday, May 17, 2016
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
Tuesday, April 26, 2016
Tense Tumours Lead to Poorer Prognosis
UCSF researchers have discovered that the chances of survival for patients with pancreatic adenocarcinoma (PDAC) — the most common type of pancreatic cancer — may depend in part on how tense their tumors are.
Tuesday, April 19, 2016
Gene Behind Rare Childhood Syndrome Identified
Online activism by one patient’s mother spurred research collaboration which led to the identification of a new genetic syndrome.
Friday, April 15, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Fat Cells That Amplify Nerve Signals in Response to Cold Also Affect Blood Sugar Metabolism
Researchers at UTSW have found that the protein connexin 43 forms cell-to-cell communication channels on the surface of emerging beige fat cells that amplify the signals from those few nerve fibers.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Genes Underlying Dogs’ Social Ability Revealed
The social ability of dogs is affected by genes that also seem to influence human behaviour, according to a new study from Linköping University in Sweden.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!