Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Major Breakthrough in Deciphering Bread Wheat's Genetic Code

Published: Thursday, November 29, 2012
Last Updated: Thursday, November 29, 2012
Bookmark and Share
UK, German and US scientists decipher complex genetic code to create new tools for breeders and researchers across the world.

Scientists, including Professor Keith Edwards and Dr Gary Barker from the University of Bristol, have unlocked key components of the genetic code of one of the world’s most important crops. The first analysis of the complex and exceptionally large bread wheat genome, published today in Nature, is a major breakthrough in breeding wheat varieties that are more productive and better able to cope with disease, drought and other stresses that cause crop losses.

The identification of around 96,000 wheat genes, and insights into the links between them, lays strong foundations for accelerating wheat improvement through advanced molecular breeding and genetic engineering. The research contributes to directly improving food security by facilitating new approaches to wheat crop improvement that will accelerate the production of new wheat varieties and stimulate new research. The analysis comes just two years after UK researchers finished generating the sequence.

The project was led by Neil Hall, Mike Bevan, Keith Edwards, Klaus Mayer, from the University of Liverpool, the John Innes Centre, the University of Bristol, and the Institute of Bioinformatics and Systems Biology, Helmholtz-Zentrum, Munich, respectively, and Anthony Hall at the University of Liverpool.  W. Richard McCombie at Cold Spring Harbor Laboratory, and Jan Dvorak at the Univerisity of California, Davis, led the US contribution to the project.

The team sifted through vast amounts of DNA sequence data, effectively translating the sequence into something that scientists and plant breeders can use effectively. All of their data and analyses were freely available to users world-wide.

Professor Keith Edwards said: “Since 1980, the rate of increase in wheat yields has declined. Analysis of the wheat genome sequence data provides a new and very powerful foundation for breeding future generations of wheat more quickly and more precisely, to help address this problem.”

The analysis is already being used in research funded by the Biotechnology and Biological Sciences Research Council (BBSRC) to introduce a wider range of genetic variation into commercial cultivars and make use of wild wheat’s untapped genetic reservoirs that could help improve tolerance to diseases and the effects of climate change. The wheat breeding community and seed suppliers have welcomed the research.

The sequence data has been deposited at the European Nucleotide Archive and is also available from databases in the UK and Germany.

Researchers from the European Bioinformatics Institute, Kansas State University, and the United Sates Department of Agriculture were also vital to the project’s success. The research was possible thanks to major funding was form the Biotechnology and Biological Sciences Research Council (BBSRC), the EU and the National Science Foundation (NSF).

Professor Douglas Kell, BBSRC Chief Executive, said: “In the face of this year’s wheat crop losses, and worries over the impact on prices for consumers, this breakthrough in our understanding of the bread wheat genome could not have come at a better time. This modern strategy is a key component to supporting food security and gives breeders the tools to produce more robust varieties with higher yields. It will help to identify the best genetic sequences for use in breeding programmes.”

David Willetts, Minister for Universities and Science said: “This groundbreaking research is testament to the excellence of Britain’s science base and demonstrates the capability we want to build on through the agri-tech strategy currently being developed.  The findings will help us feed a growing global population by speeding up the development of new varieties of wheat able to cope with the challenges faced by farmers worldwide.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Human Trials of Manufactured Blood Within Two Years
The first human trials of lab-produced blood to help create better-matched blood for patients with complex blood conditions has been announced by NHS Blood and Transplant.
Monday, June 29, 2015
Researchers to Use Algae to Clean up Mine Water
Algae will harvest the precious heavy metals and produce biofuel at the same time.
Friday, December 05, 2014
‘Switching off’ Autoimmune Diseases
Scientists have made an important breakthrough in the fight against debilitating autoimmune diseases by revealing how to stop cells attacking healthy body tissue.
Thursday, September 04, 2014
Protein Responsible for Controlling Communication Between Brain Cells Identified
Scientists are a step closer to understanding how some of the brain’s 100 billion nerve cells co-ordinate their communication.
Thursday, November 28, 2013
Manipulation of Protein Could Help Stop Spread of Cancer Cells
New findings, published in the Nature journal Oncogene, reveal how a protein, PRH, is normally able to prevent cells from unnecessary migration.
Monday, November 18, 2013
Dogs Could Act as Effective Early-Warning System for Patients with Diabetes
Dogs that are trained to respond to their owners’ hypoglycaemia could offer a very effective way to alert diabetic patients of impending lowered blood sugars.
Wednesday, August 21, 2013
Sixteen New Genetic Regions for Allergies Discovered
Regions discovered during two of the largest genetic studies ever conducted on common allergies, including pollen, dust-mite and cat allergies.
Monday, July 01, 2013
Researchers Find Key to Blood-Clotting Process
Researchers have uncovered a key process in understanding how blood clots form that could help pave the way for new therapies to reduce the risk of heart attacks.
Wednesday, June 26, 2013
Molecular Modelling to Help Create Better, Safer Drugs
How our bodies break down the common drugs ibuprofen, diclofenac and warfarin is the subject of a new study from the University of Bristol.
Friday, May 24, 2013
Random Walks on DNA
Scientists have revealed how a bacterial enzyme has evolved an energy-efficient method to move long distances along DNA.
Monday, April 22, 2013
Debating the Science and Ethics of Synthetic Biology
The science and ethics of synthetic biology and what it means for the UK will be the subject of a Royal Society of Chemistry debate to be streamed live on Wednesday 14 November.
Tuesday, November 06, 2012
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!