Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Precisely Engineering 3-D Brain Tissues

Published: Thursday, November 29, 2012
Last Updated: Thursday, November 29, 2012
Bookmark and Share
New design technique could enable personalized medicine, studies of brain wiring.

Borrowing from microfabrication techniques used in the semiconductor industry, MIT and Harvard Medical School (HMS) engineers have developed a simple and inexpensive way to create three-dimensional brain tissues in a lab dish.

The new technique yields tissue constructs that closely mimic the cellular composition of those in the living brain, allowing scientists to study how neurons form connections and to predict how cells from individual patients might respond to different drugs. The work also paves the way for developing bioengineered implants to replace damaged tissue for organ systems, according to the researchers.

“We think that by bringing this kind of control and manipulation into neurobiology, we can investigate many different directions,” says Utkan Demirci, an assistant professor in the Harvard-MIT Division of Health Sciences and Technology (HST).

Demirci and Ed Boyden, associate professor of biological engineering and brain and cognitive sciences at MIT’s Media Lab and McGovern Institute,  are senior authors of a paper describing the new technique, which appears in the Nov. 27 online edition of the journal Advanced Materials. The paper’s lead author is Umut Gurkan, a postdoc at HST, Harvard Medical School and Brigham and Women’s Hospital.

‘Unique challenges’

Although researchers have had some success growing artificial tissues such as liver or kidney, “the brain presents some unique challenges,” Boyden says. “One of the challenges is the incredible spatial heterogeneity. There are so many kinds of cells, and they have such intricate wiring.”

Brain tissue includes many types of neurons, including inhibitory and excitatory neurons, as well as supportive cells such as glial cells. All of these cells occur at specific ratios and in specific locations.

To mimic this architectural complexity in their engineered tissues, the researchers embedded a mixture of brain cells taken from the primary cortex of rats into sheets of hydrogel. They also included components of the extracellular matrix, which provides structural support and helps regulate cell behavior.

Those sheets were then stacked in layers, which can be sealed together using light to crosslink hydrogels. By covering layers of gels with plastic photomasks of varying shapes, the researchers could control how much of the gel was exposed to light, thus controlling the 3-D shape of the multilayer tissue construct.

This type of photolithography is also used to build integrated circuits onto semiconductors — a process that requires a photomask aligner machine, which costs tens of thousands of dollars. However, the team developed a much less expensive way to assemble tissues using masks made from sheets of plastic, similar to overhead transparencies, held in place with alignment pins.

The tissue cubes can be made with a precision of 10 microns, comparable to the size of a single cell body. At the other end of the spectrum, the researchers are aiming to create a cubic millimeter of brain tissue with 100,000 cells and 900 million connections.

Answering fundamental questions

Because the tissues include a diverse repertoire of brain cells, occurring in the same ratios as they do in natural brain tissue, they could be used to study how neurons form the connections that allow them to communicate with each other.

“In the short term, there's a lot of fundamental questions you can answer about how cells interact with each other and respond to environmental cues,” Boyden says.

As a first step, the researchers used these tissue constructs to study how a neuron’s environment might constrain its growth. To do this, they placed single neurons in gel cubes of different sizes, then measured the cells’ neurites, long extensions that neurons use to communicate with other cells. It turns out that under these conditions, neurons get “claustrophobic,” Demirci says. “In small gels, they don't necessarily send out as long neurites as they would in a five-times-larger gel.”

In the long term, the researchers hope to gain a better understanding of how to design tissue implants that could be used to replace damaged tissue in patients. Much research has been done in this area, but it has been difficult to figure out whether the new tissues are correctly wiring up with existing tissue and exchanging the right kinds of information.

Another long-term goal is using the tissues for personalized medicine. One day, doctors may be able to take cells from a patient with a neurological disorder and transform them into induced pluripotent stem cells, then induce these constructs to grow into neurons in a lab dish. By exposing these tissues to many possible drugs, “you might be able to figure out if a drug would benefit that person without having to spend years giving them lots of different drugs,” Boyden says.

Other authors of the paper are Yantao Fan, a visiting graduate student at HMS and HST; Feng Xu and Emel Sokullu Urkac, postdocs at HMS and HST; Gunes Parlakgul, a visiting medical student at HMS and HST; MIT graduate students Jacob Bernstein and Burcu Erkmen; and Wangli Xing, a professor at Tsinghua University.

The research was funded by the National Science Foundation, the Paul Allen Family Foundation, the New York Stem Cell Foundation, the National Institutes of Health, the Institute of Engineering and Technology A.F. Harvey Prize, and MIT Lincoln Laboratory.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Wednesday, July 27, 2016
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Friday, July 01, 2016
New System for Detecting Explosives
Spectroscopic system with chip-scale lasers cuts detection time from minutes to microseconds.
Wednesday, June 01, 2016
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
JPK NanoWizard® Applied to a Wide Range of Research
The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Protein Boosts Rice Yield by 54%
Over-expression of a natural protein in rice plants led to a 54% increase in crop yield and 40% increase in nitrogen-use efficiency.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Genetic Variability in Cell Bank Lots
Researchers working with cancer cells from the same cell bank acquired at the same time, found that the cells were genetically different.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Soil Nitrogen Age Important for Precision Agriculture
Calculating the age of nitrogen in corn and soybean fields could lead to improved fertilizer application techniques.
Targeting Autoimmunity
Researchers have developed a strategy to treat a rare autoimmune disease which could lead to treatments of other autoimmune diseases.
Molecule May Affect Gaucher, Parkinson's Disease
Research has identified a molecule that restores activity of a dysfunctional enzyme linked to Gaucher and Parkinson's disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!