Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cell Banks Envisioned for Regenerative Medicine

Published: Friday, November 30, 2012
Last Updated: Friday, November 30, 2012
Bookmark and Share
Experts discuss how to meet expected demand for stem cell treatments at international conference.

Stem cell “banks” could serve as a valuable resource for emerging treatments in the field of regenerative medicine, though challenges remain to making them a reality, according to a panel of international experts who gathered at UCSF for a stem cell conference last month.

Funding for the development of stem cell lines for research has long been subject to debate, especially before President Barack Obama lifted a Bush-era ban on federal funding in 2009, but now scientists are discussing how to best meet the anticipated need for stem cells for medicine as well as research.

Stem cell treatments developed from adult cells rather than from embryonic tissue are expected to enter clinical trials for macular degeneration in Japan next year, and early successes in such trials aimed at replacing damaged tissues would be expected to drive demand for such stem cells upward. Worldwide, stem cell scientists in academia, government and the private sector are gauging strategies for moving forward with stem cell banks to meet expected demand.

So far, countries have been taking different paths toward acquiring these resources, panelists said at an Oct. 25 discussion at the International Society for Stem Cell Research conference held at the UCSF Mission Bay campus.

Panelists for the discussion, titled “Challenges and Opportunities in Cellular Reprogramming,” included Shinya Yamanaka, MD, PhD, a UCSF professor of anatomy senior investigator with the UCSF-affiliated Gladstone Institutes who won the 2012 Nobel Prize for Physiology or Medicine for discoveries that are the groundwork for many of today’s regenerative medicine strategies.

Yamanaka, who is also director of the Center for iPS Cell Research and Application at Kyoto University, has advocated stem cell banking for medicine in his native Japan, where the government recently made a commitment to begin stem cell banking.

Yamanaka pioneered the use of induced pluripotent stem (iPS) cells, which are created when individuals provide skin cells or other easily obtained cells that scientists then reprogram in the lab to become virtually any cell type. One of primary advantages to iPS cells is that their use overcomes ethical objections to the use of embryonic stem cells, which are developed from leftover embryos obtained from in vitro fertilization clinics.

Because iPS cells can be created from the cells of individuals afflicted with specific diseases, they can be used to develop new disease models to learn more about how diseases arise and how they might be treated. But in addition, panelists emphasized, iPS cells can be reprogrammed to become long-lived stem cells specialized for particular organs and tissues and play a role in treatments now being developed for regenerative medicine.

“Our effort in Japan is to establish iPS stocks for regenerative medicine,” Yamanaka said.

Individualized Treatment vs. Stem Cell Banks

In principle, the capability to use a patient’s own cells to derive individualized treatment also would be expected to avoid the threat of immune rejection posed by tissue transplants from others. However, the cost and time required to produce individualized treatment may pose a practical barrier for medical practice.

An alternative strategy is to create a sufficient number of cell lines to provide a suitable match for the population to be served.

In the same way that organ transplant recipients are matched with living donors with compatible immune systems through a process known as human-leukocyte-antigen (HLA) matching, scientists are hopeful that cell lines needed to immunologically match all recipients can be created and maintained for use when needed.

A committee of the Japanese health ministry recently granted a go-ahead for the development of cell lines from thousands of fetal umbilical blood samples, as part of the iPS Cell Stock project that Yamanaka is promoting in that country. Yamanaka aims to maintain the cell lines for use in medicine.

“What we are now planning is to establish HLA-matched banks of iPS cells … but we don’t yet how beneficial it will be to match HLA,” Yamanaka said. “I believe that we will still need immunosuppressants, but I am hoping that by matching HLA, we can at least reduce the amount of immunosuppressants, so that we can reduce side effects and increase the survival rate.”

Transplant Rejection Advances

In the United States, the National Institutes for Health (NIH) Center for Regenerative Medicine and NIH Clinical Center have developed guidelines for obtaining informed consent for iPS cell-based research and therapies, and aim to establish standards for creating cell lines for medicine.

However, stem cell banks aren’t yet being developed in this country, according to panelist Mahendra Rao, MD, PhD, the head of the NIH Center for Regenerative Medicine. “Currently the NIH is not looking at therapeutic banks of the kind that people have proposed in Japan or Europe,” Rao said.

HLA matching is unlikely to solve all of the immune rejection issues that may arise with stem cell transplantation, Rao explained, but new strategies being developed to prevent transplant rejection may prove applicable to cells derived through iPS techniques. “There are lots of other technologies that people are considering that could be an important complement,” he said.

Panelist Irving Weissman, MD, from the Institute for Stem Cell Biology and Regenerative Medicine at Stanford University School of Medicine, said that he has been able to demonstrate a promising strategy for preventing transplant rejection in his own work.

Weissman, a leading expert on hematopoietic stem cells – the cells responsible for regenerating the blood and immune system in bone marrow transplants – said that by temporarily disabling the immune system of the transplant recipient and transplanting hematopoietic stem cells along with the needed organ, it is possible to eliminate immune cells from the recipient that, if present, would cause transplant rejection. The strategy should work with tissue stem cells as well as with organ transplants, he said.

“The stem cells give rise to the cells that delete reactive immune cells [made by the recipient’s immune system] against any tissue or organ from that donor,” and can be used to avoid the need for lifelong immunosuppression, according to Weissman.

Stem Cell Donor Selection

Moderator Bruce Conklin, MD, a Gladstone senior investigator and a UCSF professor of medicine, asked panelists how feasible it was to develop a panel of iPS cell lines could serve the needs of such an ethnically and genetically diverse U.S. population.

Weissman noted that clients of in vitro fertilization clinics who provide the cells used to derive embryonic stem cell lines tend to be much less ethnically diverse than the general population.
But to develop iPS cells, “You can go get a check swab, make the cell line, and now start to set up what you need,” he said. “I think it’s the real future of regenerative medicine when we get to that stage.”

Conklin posed another donor question: Who would be the healthiest donors of cells to create cell lines for banking?

“When I get my stem cell transplant, I want it from cells and a genome that has been road tested,” he said. “I would prefer to have someone who is in the senior Olympics – someone who is 95 years old and completely healthy.”

Alternatively, Conklin wondered, would it be better to select young donors whose health histories had not yet been written. Panelists acknowledged that this remains an open question.
Conklin also suggested that as donors had their genomes sequenced, it would reveal dozens of defective genes, as all humans possess genetic imperfections. So what criteria would result in donors being turned away because of mutations in their genomes?

Weissman countered that the many questions slowing the decision-making about stem cell banking could be coming at a high cost.

“If you don’t start, you’ll never get there,” he said. “It’s good to be conservative, and it’s good to be cost-effective, but just think of the cost of these devastating diseases for which there are no cures.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Printed "Smart Cap" Detects Spoiled Food
It might not be long before consumers can just hit “print” to create an electronic circuit or wireless sensor in the comfort of their homes.
Tuesday, July 21, 2015
Growing Spinal Disc Tissue
Scientists develop new method for growing spinal disc tissue in the lab for combating chronic back pain.
Friday, July 03, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
The Deep Carbon Cycle
Over billions of years, the total carbon content of the outer part of the Earth—in its upper mantle, crust, oceans and atmospheres—has gradually increased, scientists report.
Tuesday, June 23, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Researchers Reverse Bacterial Resistance to Antibiotics
Evidence continues to surface that supports the premise that antibiotics which have been out of use could still be effective in treating drug-resistant bacteria.
Friday, May 08, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
May the Cellular Force be With You
Like tiny construction workers, cells sculpt embryonic tissues and organs in 3D space.
Friday, December 13, 2013
Grant Supports Creation of Patient-Derived Stem Cell Lines
Researchers have received a two-year, $600,000 grant from the National Institute on Aging to develop and study patient-derived stem cell lines.
Thursday, December 12, 2013
Prostate Cancer Stem Cells are a Moving Target
Researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies.
Friday, December 06, 2013
International Fruit Pest Targeted by Genomic Research
The spotted wing drosophila is itself being targeted, thanks to groundbreaking genome sequencing.
Friday, December 06, 2013
Scientific News
Study Finds Brain Chemicals that Keep Wakefulness in Check
Researchers to develop new drugs that promote better sleep, or control hyperactivity in people with mania.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!