Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Stem Cell Banks Envisioned for Regenerative Medicine

Published: Friday, November 30, 2012
Last Updated: Friday, November 30, 2012
Bookmark and Share
Experts discuss how to meet expected demand for stem cell treatments at international conference.

Stem cell “banks” could serve as a valuable resource for emerging treatments in the field of regenerative medicine, though challenges remain to making them a reality, according to a panel of international experts who gathered at UCSF for a stem cell conference last month.

Funding for the development of stem cell lines for research has long been subject to debate, especially before President Barack Obama lifted a Bush-era ban on federal funding in 2009, but now scientists are discussing how to best meet the anticipated need for stem cells for medicine as well as research.

Stem cell treatments developed from adult cells rather than from embryonic tissue are expected to enter clinical trials for macular degeneration in Japan next year, and early successes in such trials aimed at replacing damaged tissues would be expected to drive demand for such stem cells upward. Worldwide, stem cell scientists in academia, government and the private sector are gauging strategies for moving forward with stem cell banks to meet expected demand.

So far, countries have been taking different paths toward acquiring these resources, panelists said at an Oct. 25 discussion at the International Society for Stem Cell Research conference held at the UCSF Mission Bay campus.

Panelists for the discussion, titled “Challenges and Opportunities in Cellular Reprogramming,” included Shinya Yamanaka, MD, PhD, a UCSF professor of anatomy senior investigator with the UCSF-affiliated Gladstone Institutes who won the 2012 Nobel Prize for Physiology or Medicine for discoveries that are the groundwork for many of today’s regenerative medicine strategies.

Yamanaka, who is also director of the Center for iPS Cell Research and Application at Kyoto University, has advocated stem cell banking for medicine in his native Japan, where the government recently made a commitment to begin stem cell banking.

Yamanaka pioneered the use of induced pluripotent stem (iPS) cells, which are created when individuals provide skin cells or other easily obtained cells that scientists then reprogram in the lab to become virtually any cell type. One of primary advantages to iPS cells is that their use overcomes ethical objections to the use of embryonic stem cells, which are developed from leftover embryos obtained from in vitro fertilization clinics.

Because iPS cells can be created from the cells of individuals afflicted with specific diseases, they can be used to develop new disease models to learn more about how diseases arise and how they might be treated. But in addition, panelists emphasized, iPS cells can be reprogrammed to become long-lived stem cells specialized for particular organs and tissues and play a role in treatments now being developed for regenerative medicine.

“Our effort in Japan is to establish iPS stocks for regenerative medicine,” Yamanaka said.

Individualized Treatment vs. Stem Cell Banks

In principle, the capability to use a patient’s own cells to derive individualized treatment also would be expected to avoid the threat of immune rejection posed by tissue transplants from others. However, the cost and time required to produce individualized treatment may pose a practical barrier for medical practice.

An alternative strategy is to create a sufficient number of cell lines to provide a suitable match for the population to be served.

In the same way that organ transplant recipients are matched with living donors with compatible immune systems through a process known as human-leukocyte-antigen (HLA) matching, scientists are hopeful that cell lines needed to immunologically match all recipients can be created and maintained for use when needed.

A committee of the Japanese health ministry recently granted a go-ahead for the development of cell lines from thousands of fetal umbilical blood samples, as part of the iPS Cell Stock project that Yamanaka is promoting in that country. Yamanaka aims to maintain the cell lines for use in medicine.

“What we are now planning is to establish HLA-matched banks of iPS cells … but we don’t yet how beneficial it will be to match HLA,” Yamanaka said. “I believe that we will still need immunosuppressants, but I am hoping that by matching HLA, we can at least reduce the amount of immunosuppressants, so that we can reduce side effects and increase the survival rate.”

Transplant Rejection Advances

In the United States, the National Institutes for Health (NIH) Center for Regenerative Medicine and NIH Clinical Center have developed guidelines for obtaining informed consent for iPS cell-based research and therapies, and aim to establish standards for creating cell lines for medicine.

However, stem cell banks aren’t yet being developed in this country, according to panelist Mahendra Rao, MD, PhD, the head of the NIH Center for Regenerative Medicine. “Currently the NIH is not looking at therapeutic banks of the kind that people have proposed in Japan or Europe,” Rao said.

HLA matching is unlikely to solve all of the immune rejection issues that may arise with stem cell transplantation, Rao explained, but new strategies being developed to prevent transplant rejection may prove applicable to cells derived through iPS techniques. “There are lots of other technologies that people are considering that could be an important complement,” he said.

Panelist Irving Weissman, MD, from the Institute for Stem Cell Biology and Regenerative Medicine at Stanford University School of Medicine, said that he has been able to demonstrate a promising strategy for preventing transplant rejection in his own work.

Weissman, a leading expert on hematopoietic stem cells – the cells responsible for regenerating the blood and immune system in bone marrow transplants – said that by temporarily disabling the immune system of the transplant recipient and transplanting hematopoietic stem cells along with the needed organ, it is possible to eliminate immune cells from the recipient that, if present, would cause transplant rejection. The strategy should work with tissue stem cells as well as with organ transplants, he said.

“The stem cells give rise to the cells that delete reactive immune cells [made by the recipient’s immune system] against any tissue or organ from that donor,” and can be used to avoid the need for lifelong immunosuppression, according to Weissman.

Stem Cell Donor Selection

Moderator Bruce Conklin, MD, a Gladstone senior investigator and a UCSF professor of medicine, asked panelists how feasible it was to develop a panel of iPS cell lines could serve the needs of such an ethnically and genetically diverse U.S. population.

Weissman noted that clients of in vitro fertilization clinics who provide the cells used to derive embryonic stem cell lines tend to be much less ethnically diverse than the general population.
But to develop iPS cells, “You can go get a check swab, make the cell line, and now start to set up what you need,” he said. “I think it’s the real future of regenerative medicine when we get to that stage.”

Conklin posed another donor question: Who would be the healthiest donors of cells to create cell lines for banking?

“When I get my stem cell transplant, I want it from cells and a genome that has been road tested,” he said. “I would prefer to have someone who is in the senior Olympics – someone who is 95 years old and completely healthy.”

Alternatively, Conklin wondered, would it be better to select young donors whose health histories had not yet been written. Panelists acknowledged that this remains an open question.
Conklin also suggested that as donors had their genomes sequenced, it would reveal dozens of defective genes, as all humans possess genetic imperfections. So what criteria would result in donors being turned away because of mutations in their genomes?

Weissman countered that the many questions slowing the decision-making about stem cell banking could be coming at a high cost.

“If you don’t start, you’ll never get there,” he said. “It’s good to be conservative, and it’s good to be cost-effective, but just think of the cost of these devastating diseases for which there are no cures.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Some 3-D Printed Objects Are Toxic
Researchers at the University of California, Riverside have found parts produced by some commercial 3-D printers are toxic to certain fish embryos.
Monday, November 09, 2015
Artificial Kidney Research Gets A Boost
Development of a surgically implantable, artificial kidney — a promising alternative to kidney transplantation or dialysis for people with end-stage kidney disease — has received a $6 million boost.
Monday, November 09, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Sustaining Our Salad
Improving lettuce crops is the aim of a new, $4.5 million grant, awarded to University of California, Davis, researchers by the U.S. Department of Agriculture's National Institute of Food and Agriculture.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Influenza A Viruses More Likely To Emerge In East Asia Than North America
Novel strains of influenza A are more likely to emerge in East Asia than in North America, according to a global analysis by the One Health Institute at the UC Davis School of Veterinary Medicine and EcoHealth Alliance.
Wednesday, September 30, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Crunching Numbers to Combat Cancer
UCSF receives $5 million to integrate data from cancer research models.
Wednesday, September 16, 2015
Virus In Cattle Linked To Human Breast Cancer
A new study by UC Berkeley researchers establishes for the first time a link between infection with the bovine leukemia virus and human breast cancer.
Wednesday, September 16, 2015
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos