Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Building with DNA Bricks

Published: Friday, November 30, 2012
Last Updated: Friday, November 30, 2012
Bookmark and Share
Harvard’s Wyss Institute creates versatile 3-D nanostructures.

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have created more than 100 3-D nanostructures using DNA building blocks that function like Lego bricks — a major advance from the two-dimensional structures the same team built a few months ago.

In effect, the advance means researchers went from being able to build a flat wall of Legos to building a house. The new method, featured as a cover research article in the Nov. 30 issue of Science, is the next step toward using DNA nanotechnologies for more sophisticated applications than ever possible before, such as “smart” medical devices that target drugs selectively to disease sites, programmable imaging probes, templates for precisely arranging inorganic materials in the manufacturing of next generation computer circuits, and more.

The nanofabrication technique, called “DNA-brick self-assembly,” uses short, synthetic strands of DNA that work like interlocking Lego bricks.  It capitalizes on the ability to program DNA to form into predesigned shapes thanks to the underlying “recipe” of DNA base pairs: A (adenosine) only binds to T (thymine), and C (cytosine) only binds to G (guanine).

Earlier this year, the Wyss team reported in Nature how they could create a collection of two-dimensional shapes by stacking one DNA brick (42 bases in length) upon another.

But there’s a “twist” in the new method required to build in 3-D.

The trick is to start with an even smaller DNA brick (32 bases in length), which changes the orientation of every matched-up pair of bricks to a 90-degree angle — giving every two Legos a 3-D shape. In this way, the team can use these bricks to build “out” in addition to “up,” and eventually form 3-D structures, such as a 25-nanometer solid cube containing hundreds of bricks. The cube becomes a “master” DNA “molecular canvas”; in this case, the canvas was composed of 1,000 “voxels,” which correspond to eight base-pairs and measure about 2.5 nanometers in size — meaning this is architecture at its tiniest.

The master canvas is where the modularity comes in: By simply selecting subsets of specific DNA bricks from the large cubic structure, the team built 102 3-D structures with sophisticated surface features, as well as intricate interior cavities and tunnels.

“This is a simple, versatile, and robust method,” says Peng Yin, Wyss core faculty member and senior author on the study.

Another method used to build 3-D structures, called DNA origami, is tougher to use to build complex shapes, Yin said, because it relies on a long “scaffold” strand of DNA that folds to interact with hundreds of shorter “staple” strands — and each new shape requires a new scaffold routing strategy and hence new staples. In contrast, the DNA brick method does not use any scaffold strand and therefore has a modular architecture; each brick can be added or removed independently.

“We are moving at lightning speed in our ability to devise ever more powerful ways to use biocompatible DNA molecules as structural building blocks for nanotechnology, which could have great value for medicine as well as nonmedical applications,” says Wyss Institute Director Donald Ingber.

The research team led by Yin, who is also an assistant professor of systems biology at Harvard Medical School (HMS), included Wyss postdoctoral fellow Yonggang Ke and Wyss graduate student Luvena Ong. Another contributor was Wyss core faculty member William Shih, who also holds appointments at HMS and at the Harvard-affiliated Dana-Farber Cancer Institute. To learn more about the team’s work, visit its website.

The research was supported by the Office of Naval Research, the Army Research Office, the National Science Foundation, the National Institutes of Health, and the Wyss Institute for Biologically Inspired Engineering at Harvard University.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Weapon Against Breast Cancer
Molecular marker in healthy tissue can predict a woman’s risk of getting the disease, research says.
Thursday, April 07, 2016
Collaboration to Develop Cancer Therapeutics
Major license agreement with Merck, enabled by Blavatnik Biomedical Accelerator, aims to develop therapy for most common form of acute leukemia.
Tuesday, March 22, 2016
Scaling Up Tissue Engineering
Wyss Institute has invented Bioprinting technique that creates thick 3D tissues composed of human stem cells and embedded vasculature, with potential applications in drug testing and regenerative medicine.
Tuesday, March 15, 2016
Into Thin Air
Lower oxygen intake could be used to prevent mitochondrial diseases from forming.
Tuesday, March 01, 2016
High Poverty’s Effect on Childhood Leukemia
Patients more likely to suffer early relapses, which can be harder to treat.
Thursday, February 25, 2016
A Cancer’s Surprise Origins, Caught in Action
First demonstration of a melanoma arising from a single cell.
Monday, February 01, 2016
Seeing Hope
Gene therapy/drug combo restores some vision in mice with optic nerve injury.
Wednesday, January 20, 2016
Diagnosing Cancer from a Single Drop of Blood
What if a physician could effectively diagnose cancer from one drop of a patient’s blood?
Friday, January 08, 2016
Detecting When and Why Deadly Blood Clots Form
New bioinspired blood coagulation assay is more sensitive than existing assays and could one day be used to diagnose rare bleeding disorders and prevent toxic effects of anticoagulant and antiplatelet drugs.
Wednesday, January 06, 2016
Helping Cells Forget Who They Are
Erasing a cell’s memory makes it easier to manipulate them into becoming another type of cell.
Wednesday, December 23, 2015
Gut-on-a-Chip Model Offers Hope for IBD Sufferers
Wyss Institute replicates gut’s microenvironment in the lab, allowing researchers new access.
Thursday, December 17, 2015
Cell Memory Loss Enables the Production of Stem Cells
Scientists identify a molecular key that helps maintain identity and prevents the conversion of adult cells into iPS cells.
Thursday, December 17, 2015
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Tuesday, November 24, 2015
On Top of the Flu
Chance for advance warning in search-based tracking method.
Thursday, November 12, 2015
Escape Prevention
Studying flu virus structure brings us a step closer to a permanent vaccine.
Monday, October 05, 2015
Scientific News
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
How Skeletal Stem Cells Form The Blueprint Of The Face
USC researchers discover that two types of molecular signals work to control where and when stem cells turn into facial cartilage.
Intestinal Worms Boost Immune System In A Surprising Way
EPFL researchers find that intestinal worm infections cause lymph nodes to produce more immune cells as well as grow in size.
Measuring The Airborne Toxicants Urban Bicyclists Inhale
Researchers analyze breath biomarkers to measure uptake of volatile organic compounds by bicyclists.
Breast Milk Hormones Impact Bacteria In Infants’ Guts
Intestinal microbiome of children born to obese mothers significantly different from those born to mothers of healthy weight, CU Anschutz researchers find.
Newborn Screening Test Developed For Rare, Deadly Neurological Disorder
Scientists have developed a new dried blood spot screening test for Niemann-Pick type C, with goal to speed diagnosis and treatment.
'Kidney on a Chip' Facilitates Safer Drug Dosing
University of Michigan researchers have used a "kidney on a chip" device to mimic the flow of medication through human kidneys and measure its effect on kidney cells.
New Autism Blood Biomarker Identified
Researchers at UT Southwestern Medical Center have identified a blood biomarker that may aid in earlier diagnosis of children with autism spectrum disorder, or ASD.
New Method Allows First Look At Embryo Implantation
Researchers at The Rockefeller University develop a method that shows the molecular and cellular processes that occur up to day 14 after fertilization.
Shining A Light On Bladder Cancer
Researchers scrutinize patterns of mutations in bladder tumor genomes, gleaning insights into the roles of DNA repair and tobacco-related DNA damage.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!