Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Discover How Two Proteins Help Keep Cells Healthy

Published: Thursday, December 06, 2012
Last Updated: Thursday, December 06, 2012
Bookmark and Share
The work has implications for cancer drug development.

Scientists at The Scripps Research Institute (TSRI) have determined how two proteins help create organelles, or specialized subunits within a cell, that play a vital role in maintaining cell health. This discovery opens the door for research on substances that could interfere with the formation of these organelles and lead to new therapies for cancer.

The study, published online ahead of print on December 2, 2012, by the journal Nature Structural & Molecular Biology, focuses on the structure and function of the two proteins, ATG12 and ATG5. These proteins need to bond correctly to form an organelle called the autophagosome, which acts like a trash bag that removes toxic materials and provides the cell with nutrition through recycling.

“Our study focuses on one of the big mysteries in our field,” said Takanori Otomo, the TSRI scientist who led the effort. “These proteins are linked, but no one has explained why clearly. We’re very excited to have determined the structure of these linked proteins so that the information is available to do the next level of research.”

Asking Questions, Finding Answers

At the beginning of the study, Otomo and colleagues knew that many proteins work together to form autophagosomes as part of the process known as autophagy, which breaks down large proteins, invasive pathogens, cell waste, and toxic materials. As part of this process, one key protein, LC3, attaches to a lipid, or fat molecule, on the autophagosome membrane. Yet LC3 cannot attach to a lipid without the help of ATG12 and ATG5, and a cell will only form an autophagosome if the linkage, or conjugate, between these two molecules has been established.

Otomo and colleagues set out to determine the shape of the ATG12-ATG5 conjugate, and to find out why it was needed for LC3 lipidation.

Using a method called X-ray crystallography, the scientists were able to unveil the details of this conjugate. When ATG12 and ATG5 come together, they form a rigid architecture and create a surface area that is made up of evolutionarily conserved amino acids and facilitates LC3 lipidation. The researchers confirmed this finding by mutating those conserved amino acids , which prevented an autophagosome from forming.

Otomo and colleagues also identified a surface on the ATG12-ATG5 conjugate that binds to ATG3, another enzyme required to attach LC3 to the lipid.

Toward Better Understanding and New Cancer Treatments

With this new knowledge, the researchers hope to design molecules that inhibit autophagosome formation, a direction of research that has implications for cancer treatment. A drug that directly inhibits ATG3 binding, for example, could be used in coordination with current therapies to make cancer treatments more effective, preventing a cancer cell from recycling nutrients and prolonging its survival.

“Ultimately, we’d like to understand the molecular mechanisms of each step of autophagy,” he said, “As we make progress toward this goal, we will have a better idea of how to manipulate the pathway for therapeutic purposes. This field is still young and there are a lot of unknowns. This work is just the beginning.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Versatile New Molecule-Building Technique
Chemists at The Scripps Research Institute (TSRI) have devised a new and widely applicable technique for building potential drug molecules and other organic compounds.
Tuesday, January 19, 2016
Flipping Molecular 'Switch' May Reduce Nicotine's Effects in the Brain
Scientists at The Scripps Research Institute (TSRI) have discovered that a lipid (fat molecule) in brain cells may act as a “switch” to increase or decrease the motivation to consume nicotine.
Friday, January 15, 2016
TSRI Team Comes Together with Rare Disease Community
Don’t worry, science fiction fans, the machines aren’t taking over quite yet. It turns out humans still beat computers at reading and comprehending text.
Monday, January 11, 2016
Single ‘Transformer’ Proteins
A new study led by scientists at The Scripps Research Institute (TSRI) and St. Jude Children’s Research Hospital shows how a protein involved in cancer twists and morphs into different structures.
Monday, January 11, 2016
Pushing Drug Discovery Forward
A new study, led by scientists at The Scripps Research Institute (TSRI), shows how different pharmaceutical drugs hit either the “on” or “off” switch of a signaling protein linked to asthma, obesity and type 2 diabetes.
Monday, December 14, 2015
TSRI Team Finds Unique Anti-Diabetes Compound
Scientists from The Scripps Research Institute (TSRI) have deployed a powerful new drug discovery technique to identify an anti-diabetes compound with a novel mechanism of action.
Thursday, December 10, 2015
Protein 'Talks' to Wrong Partners in Cystic Fibrosis
Scientists at The Scripps Research Institute (TSRI) have found evidence that a mutant protein responsible for most cases of cystic fibrosis is so busy “talking” to the wrong cellular neighbors that it cannot function normally and is prematurely degraded.
Monday, December 07, 2015
'Fingerprints' for Major Drug Development Targets
For the first time, scientists from the Florida campus of The Scripps Research Institute (TSRI) have created detailed “fingerprints” of a class of surface receptors that have proven highly useful for drug development.
Friday, December 04, 2015
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Thursday, November 26, 2015
Surprising Trait Found in Anti-HIV Antibodies
Scientists at The Scripps Research Institute (TSRI) have new weapons in the fight against HIV.
Monday, November 23, 2015
Potential Persistent Tuberculosis Treatment
Researchers have discovered several first-in-class compounds that target hidden TB infections by attacking a critical process the bacteria use to survive in the hostile environment of the lungs.
Monday, November 23, 2015
Long-Sought Protein Sensor for the ‘Sixth Sense’ Discovered
In a study led by scientists from The Scripps Research Institute (TSRI)the sensor protein for propioception has been identified.
Monday, November 16, 2015
German and US Partners Join Forces in Stem Cell Research
Researchers at The Scripps Research Institute (TSRI) in California, USA, and two German institutes, the Center for Integrated Psychiatry Kiel (ZIP) and the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, have announced a partnership to advance the quality control of human stem cells.
Monday, October 19, 2015
Metabolomic Platform Reveals Fundamental Flaw in Common Lab Technology
A new study led by scientists at The Scripps Research Institute (TSRI) shows that a technology used in thousands of laboratories, called gas chromatography mass spectrometry (GC-MS), fundamentally alters the samples it analyzes.
Wednesday, October 07, 2015
Promising Drug Candidate to Treat Chronic Itch
In a new study, scientists from the Florida campus of The Scripps Research Institute (TSRI) describe a class of compounds with the potential to stop chronic itch without the adverse side effects normally associated with medicating the condition.
Monday, October 05, 2015
Scientific News
Head Injury Patients have Protein Clumps Associated with Alzheimer’s Disease
Scientists have revealed that protein clumps associated with Alzheimer's disease are also found in the brains of people who have had a head injury.
Exposure to Air Pollution 30 Years Ago Associated with Increased Risk of Death
Exposure to air pollution more than 30 years ago may still affect an individual's mortality risk today, according to new research from Imperial College London.
More Then 1 in 20 U.S. Children have Dizziness and Balance Problems
Researchers at NIH have found that girls have a higher prevalence of dizziness and balance problems compared to boys, 5.7 percent and 5.0 percent.
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Low-Cost, Portable NQR Spectroscopy
A researcher at Case Western Reserve University is developing a low-cost, portable prototype designed to detect tainted medicines and food supplements that otherwise can make their way to consumers. The technology can authenticate good medicines and supplements.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Spero Therapeutics Announces $30 Million Series B Preferred Financing
Company has announced financing of $30 million to support development of novel therapies to treat gram-negative bacterial infections.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!