Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Melbourne University and Bio Farma to Jointly Develop Vaccine Adjuvant

Published: Friday, December 07, 2012
Last Updated: Friday, December 07, 2012
Bookmark and Share
Agreement to develop a vaccine delivery system that can boost the vaccine effectiveness for a range of infectious diseases.

Melbourne University has announced an agreement with Indonesian vaccine maker Bio Farma to develop a vaccine delivery system that can boost the vaccine effectiveness for a range of infectious diseases, including Hepatitis C, Diphtheria, Tetanus, Pertussis, Hepatitis B and Haemopilus influenza type-B.

"Bio Farma is proud to collaborate with the University of Melbourne. This agreement will surely give us an opportunity to enhance our research capacity," said Iskandar, the President Director of Bio Farma.

Iskandar expressed hope in the future of the collaboration on a vaccine delivery system to boost vaccine effectiveness (vaccine adjuvant) which would lead into a real contribution in the prevention of communicable disease in the world.

Under the proposed arrangement, Melbourne University receives research funding to further evaluate and develop a proof of concept.

The research agreement was facilitated by UoM Commercial Ltd, the University's Commercial Engagement Service company and signed on 3 September 2012.

According to Iskandar, the collaboration with Melbourne University will run for 18 months as presently the research is still in the level of proof of concept.

Upon getting a result, the next step will be enhanced to a technology license level.

Professor James Angus, Dean of the Faculty of Medicine, Dentistry and Health Sciences at Melbourne University, remarked that he was delighted to be collaborating with the Board of Bio Farma and its scientific team in relation to developing a novel vaccine platform.

The vaccine platform would lead to better and more efficacious vaccines against infectious diseases. "This agreement reflects the desire for research at the University of Melbourne to be translated into impact and recognizes the importance of collaboration with leading vaccine companies to achieve this goal," said Professor Angus.

Research led by Professor David Jackson's team in the Department of Microbiology and Immunology at the University of Melbourne has shown that a synthetic TLR2 agonist-based adjuvant can enhance immunity and protect animals from viral and bacterial infections.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

U of Melbourne Launches Genomics Research Center for Infectious Disease
The Peter Doherty Institute for Infection and Immunity has launched the Doherty Centre for Applied Microbial Genomics, which is set to help transform the detection, tracking and treatment of infectious diseases in Australia.
Thursday, July 23, 2015
‘Atomic Chicken-Wire’ Is Key To Faster DNA Sequencing
An unusual and very exciting form of carbon - that can be created by drawing on paper- looks to hold the key to real-time, high throughput DNA sequencing, a technique that would revolutionise medical research and testing.
Monday, March 30, 2015
Typhoid Gene Unravelled
Natural resistance against typhoid fever is linked to a particular form of the HLA-DRB1 gene.
Tuesday, November 11, 2014
Blood Test Developed to Diagnose Early Onset Alzheimer’s Disease
New blood-test could predict a person’s risk of developing AD much earlier than is currently possible.
Thursday, October 30, 2014
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!