Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Stem Cells to Aid Search for New Drugs in Hard-to-Treat Conditions

Published: Monday, December 10, 2012
Last Updated: Monday, December 10, 2012
Bookmark and Share
StemBANCC consortium aims to derive 1,500 stem cell lines from 500 patients across eight diseases.

Stem cells are to be used in a £45m effort to look at providing new treatments for a host of complex conditions affecting large numbers of people, including Alzheimer's, Parkinson's, autism and diabetes.

However, it’s not the stem cells themselves that would form the new treatments. Instead, the stem cells would provide a platform to transform the process of discovering new drugs.

A Europe-wide consortium of over 20 universities and 10 pharmaceutical companies, led by Oxford University and Roche, is to generate a giant resource of stem cells derived from patients' skin or blood cells.

The StemBANCC consortium aims to derive 1,500 stem cell lines from 500 patients across eight diseases, using the techniques developed by Japanese scientist Shinya Yamanaka that saw him win a share of this year’s Nobel Prize for Physiology or Medicine.

'This has been shown for two or three patients for several indications; the proof of concept is there,' says Martin Graf, StemBANCC coordinator and head of Roche's Stem Cell Platform in Basel, Switzerland, explaining the scale of the project. 'We now plan to create 1,500 iPS cell lines from 500 patients.'

The researchers will then be able to use the 'induced pluripotent' stem cells, or iPS cells, to generate different tissue types - nerve cells, heart muscle, blood vessels, liver or pancreas cells, etc - against which drug compounds can be screened.

Testing drug candidates from the start in cells derived from patients - and so are directly relevant to the disease - will be much more relevant for coming up with effective treatments, the researchers say.

This approach to drug discovery could be particularly important in the diseases the researchers are interested in, where it has proved so difficult to come up with new treatments and where the pharmaceutical industry's most promising new drug candidates have often failed in late-stage trials.

'It’s the perfect platform for finding drugs. It's superior because we are looking directly at human cells from the patient, capturing the genetic complexity of the disease,' says Dr Zameel Cader, a consultant neurologist at the University of Oxford and principal scientist of StemBANCC.

Currently, many drugs fail late on in development because the tests used in the initial stages simply do not reflect what happens when the drug is administered in patients.

It is largely standard to screen compounds in lab cell lines that are often amenable to study but are nothing like cells in patients. Promising compounds then go into studies in animals before small-scale safety trials in humans look at safety.

It is only in larger trials, and after many millions of pounds have been spent, that it becomes apparent that the drugs have little or no effect in patients.

'The drug discovery process is flawed and isn't working. It needs reshaping, and stem cells may help provide this,' says Dr Cader.

StemBANCC would provide a good supply of cells directly from patients that 'recapitulate' the disease in the lab, and against which compounds can be tested from the start, the researchers say.

Heart, kidney and liver cells would also allow toxicological screens to help spot potential side effects early.

Dr Cader explains: 'The generation of the [stem cell] bank is the easy part, relatively speaking. The harder part is to show we can identify abnormalities [in the cell lines] relevant to disease.

'We believe we will be able to see abnormalities that are there in the disease. It will be hard. But if we find them, it will be superb. We can then apply [drug] compounds into our assays [lab-based tests] and see if these compounds correct the cellular abnormalities.'

The consortium will generate iPS cells from groups of patients with the following conditions: Alzheimer's, Parkinson's, autism, schizophrenia, bipolar disorder, migraine, chronic pain and diabetes.

The intention is to make the cell lines generally available to researchers help to improve the discovery of new drugs for these hard-to-treat conditions.

'Because the stem cells can be expanded indefinitely, we can essentially produce an infinite number of these patient-derived cells to work with,' explains Dr Sally Cowley of Oxford University. 'They can be stored, shipped around the world, and potentially made accessible to any researcher anywhere.'

Dr Cowley, who runs the stem cell facility at the Oxford Stem Cell Institute, part of the Oxford Martin School, adds: 'People may be working with these cell lines for decades, if we do it right.'

The €55.6 million funding over five years is made up of €26 million from the European Union's Innovative Medicines Initiative and €21 million in 'in kind' contributions from the participating drug firms in the European pharmaceutical industry association EFPIA. Contributions from other sources make up the rest.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

HIV Hides No Longer
Researchers are working to create proteins that clear HIV-infected cells in order to eliminate latent infection and dormancy.
Friday, July 15, 2016
Type 2 Diabetes Genetics Revealed
The largest study of its kind into type 2 diabetes has produced the most detailed picture to date of the genetics underlying the condition.
Wednesday, July 13, 2016
Massive Helium Discovery a "Game Changer" for Medical Industry
A new development is gas exploration has yielded the discovery of a huge helium gas field, which could help relieve the dwindling supply.
Thursday, July 07, 2016
Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Friday, June 17, 2016
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Friday, May 27, 2016
Universal Flu Vaccine Under Development
Oxford spinout company Vaccitech has been launched with £10m seed investment to develop a universal flu vaccine already showing promise in clinical trials.
Friday, May 13, 2016
Biomarker Discovery Offers Hope For New TB Vaccine
A team of scientists led by Oxford University have made a discovery that could improve our chances of developing an effective vaccine against Tuberculosis.
Tuesday, April 12, 2016
Novel Collagen Fingerprinting Identifies A Neanderthal
Study from the universities of Oxford and Manchester uses ZooMS technique to identify traces of an extinct human.
Friday, April 01, 2016
Origin of a Species
A study by researchers at the Wellcome Trust Centre for Human Genetics at Oxford University has uncovered the key role played by a single gene in how groups of animals diverge to form new species.
Monday, February 15, 2016
HIV Keeps Growing, Even When Undetectable
A team of international researchers including scientists from Oxford University has found that HIV is still replicating in lymphoid tissue even when it is undetectable in the blood of patients on antiretroviral drugs.
Friday, January 29, 2016
Bacterial Superglue for Faster Vaccine Development
An interdisciplinary team of Oxford University researchers has devised a new technique to speed up the development of novel vaccines.
Wednesday, January 20, 2016
Millions at Risk of Little Known Deadly Tropical Disease
Melioidosis, a difficult to diagnose deadly bacterial disease, is likely to be present in many more countries than previously thought.
Tuesday, January 12, 2016
Identifying Drug Resistance Traits
Scientists have developed an easy-to-use computer program that can quickly analyse bacterial DNA from a patient's infection and predict which antibiotics will work, and which will fail due to drug resistance.
Tuesday, December 22, 2015
Faster, Cheaper TB Diagnosis
Whole Genome Sequencing is a faster, cheaper and more effective way of diagnosing tuberculosis says a new study.
Wednesday, December 09, 2015
Why we Still Don’t Have Personalised Medicine
15 years after sequencing the human genome we still do not have the promised personalised medicine, why is this?
Friday, December 04, 2015
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Core-Shell Columns in HPLC: Food Analysis Applications
Explore the most recent applications of core-shell columns in food analysis.
Review of the Analysis of Haemoglobin A1c for Diabetes Diagnostics
This paper aims to clarify methods, units, quality requirements, reference and cutoff limits for hemoglobin A1c (HbA1c) and ratio of blood glucose/HbA1c on the basis of the results from Finnish quality control surveys by comparing them to the literature.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Vaccine Strategy Targets Multiple Influenza Viruses
Scientists have identified vaccine-induced antibodies that can neutralize strains of influenza virus that infect humans.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!