Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Cancer Survival Rates will be Boosted by Drug Development

Published: Monday, December 10, 2012
Last Updated: Monday, December 10, 2012
Bookmark and Share
Bristol-Myers Squib’s research chief discusses pharmaceutical innovations at UCSF cancer center showcase.

The rate of cancer survival is expected to keep climbing in coming years largely thanks to research discoveries that are translating into new cancer drugs, which currently account for roughly 30 percent of the pharmaceutical dollar, the chief scientific officer at Bristol-Myers Squib recently said at a showcase event for the UCSF Helen Diller Family Comprehensive Cancer Center.

“Improvements in innovation in detection, prevention and treatment have provided real gains against cancers over the past few decades,” Elliott Sigal, MD, PhD, also Bristol-Myers Squib's president of research and development and a former UCSF medical resident, said during his Nov. 7 keynote address at the cancer center.

“Overall, age-adjusted, five-year survival rates in the U.S. have increased by more than one-third since 1975,” Sigal noted. “What’s more, it is estimated that advances in drug therapy - pharmaceuticals - accounted for half or more of these increases in survival rates.”

Sigal discussed three areas of innovation that he said were almost certain to continue to drive cancer survival upward.

The first is an explosion of genetic discoveries that are leading to innovations in drug design and to the better tailoring of treatments to the characteristics of individual tumors, Sigal said.

The second is the development of better chemical strategies for delivering drugs to targeted cancer cells within the body. The third thrust is the pharmaceutical manipulation of the body’s own immune system to more aggressively attack cancerous cells.

The successful translation of research discovery into better outcomes for patients depends on companies, universities and government, according to Sigal.

“We live in an ecosystem of contributions in the biomedical enterprise: small companies, large companies, government funding - and very importantly - academic researchers,” he said. “Without any one piston of the engine firing, things will fail.”

The UCSF Helen Diller Family Comprehensive Cancer Center, which recently received a renewal grant from the National Institutes of Health (NIH), unites top scientists with exceptional medical practitioners.

Their interdisciplinary teamwork enables them not only to make key scientific discoveries, but also to ensure that the knowledge gained leads to better treatments for patients.

UCSF’s long tradition of excellence in cancer research includes, notably, the Nobel Prize-winning work of J. Michael Bishop, MD, UCSF chancellor emeritus, and Harold Varmus, MD, who discovered cancer-causing oncogenes.

Their work opened new doors for exploring genetic mistakes that cause cancer, and formed the basis for some of the most important cancer research happening today.

Cancers Grouped by Genetic Mutations
The discovery of genetic alterations within cells that drive molecular events leading to their out-of-control growth - and to tumor formation, growth and spread - has changed the way medical researchers think of cancers and their treatment.

Cancer researchers have been working with the National Institutes of Health to construct the Cancer Genome Atlas, a catalog of the mutations that are responsible for normal cells becoming cancerous.

This growing understanding of mutations in cancer in turn has led to a better understanding of the chains of biochemical events that make a cell cancerous and to the identification of many new molecular targets for pharmaceutical development, Sigal said. This new knowledge also has been used to identify more effective ways to use already marketed drugs.

“Scientists and physicians are beginning to understand the underlying variability of how patients respond to the same drug treatment,” Sigal said.

Tumors have always been named for the organs in which they originate, but when it comes to drug treatment they now are being thought of more often in terms of genetic mutations and their implications, many of which are shared across organ types, Sigal said.

For example, Sigal said, “Some lung cancers may respond to drug therapy more like a select set of colon cancers, or like some prostate cancers, rather than like other types of lung cancer.” Increasingly, biomarkers and genetic tests are available to identify tumors that will respond best to particular treatments. Now drug companies can test experimental treatments in subsets of patients expected to have the most benefit.

“You could theoretically have a smaller and faster clinical program,” and be less likely to miss recognizing an effective treatment, Sigal said.

Attacking Tumors with Fewer Side Effects
Some immune antibodies that target molecules that often are present on certain types of tumors already have been developed and marketed as cancer drugs, but combining antibodies with existing chemotherapies, which are powerful toxins, is another promising approach.

“We have been working on this for 20 or 30 years or more,” he said. “There have been ups and downs.”

However, new chemical strategies hold promise, he added, especially those that use chemical “linkers” with special properties to attach an antibody to a drug and to release the active drug within a tumor cell.

“You can use the homing mechanism of the antibody to be very, very specific, and the nature of the chemistry to release the cytotoxic agent only when necessary and only when effective,” Sigal said.

Using Immune System to Fight Cancer
It’s been a century since physicians first recognized that tumors occasionally regressed when the immune system was activated as a result of an acute infection.

But only in recent years have scientists uncovered many of the details about how immune responses begin, end and are directed to specific targets. Now they have begun to manipulate these responses.

Normally the immune system accepts a tumor as part of the self, but academic researchers and drug companies have conspired to successfully rev up the immune system to fight cancer.

UCSF researchers and oncologists have played a key role in developing and testing immunotherapies that enhance the body’s own immune response. These treatments include Yervoy, which releases the brakes that hold back the immune system from fighting cancer, and Provenge, which in 2010 became the first vaccine approved to treat any cancer. Provenge was approved for the treatment of prostate cancer, following early studies led by UCSF oncologist Eric Small, MD.

Vervoy was shepherded through the final stages of clinical trials by Bristol-Myers Squibb and now is an approved treatment for melanoma, the most deadly skin cancer.

The pharmaceutical giant bought both of the smaller companies that first developed and combined two different drug strategies to create the new treatment, which is based on scientific discoveries by James Allison, PhD, a former member of the UC Berkeley faculty and of UCSF’s cancer center, who now chairs the University of Texas MD Anderson Cancer Center Department of Immunology.

“We’re used to delivering an agent and watching the tumor shrink, but in this case you incite an inflammatory reaction and the tumor swells,” Sigal said. “Many of our competitors missed this scientific fact and thought it actually was progression of disease.”

Melanomas, however, have completed vanished among a significant fraction of patients treated with Yervoy without returning for five years or more, Sigal said, and for all melanoma patients treated in clinical trials, the likelihood of survival has roughly doubled. “Once the immune system is reactivated the responses to fight tumors can be quite profound and quite durable,” he said.

Sigal wants to better target the drug to patients most likely to benefit, but the company also aims to evaluate Yervoy combined with radiation, or with traditional chemotherapy or with other drugs that activate the immune system. The focus of these clinical trials will be prostate, ovarian and lung cancer, Sigal said.

Universities have been a major source of new drugs, and strong ties between sectors remain crucial to developing better treatments and improving cancer survival, according to Sigal.

“A focus on partnerships to extend our reach and scope has been critical to all R&D [research and development] organizations,” he said. “We’re in a very globally interconnected world. Science is more and more complex. The regulatory environment is very demanding, and we are all resource-constrained. Research grants are very hard to come by. … And we have to share our ideas and resources more than ever. Academia is critical to everything that the industry does.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Some 3-D Printed Objects Are Toxic
Researchers at the University of California, Riverside have found parts produced by some commercial 3-D printers are toxic to certain fish embryos.
Monday, November 09, 2015
Artificial Kidney Research Gets A Boost
Development of a surgically implantable, artificial kidney — a promising alternative to kidney transplantation or dialysis for people with end-stage kidney disease — has received a $6 million boost.
Monday, November 09, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Sustaining Our Salad
Improving lettuce crops is the aim of a new, $4.5 million grant, awarded to University of California, Davis, researchers by the U.S. Department of Agriculture's National Institute of Food and Agriculture.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Influenza A Viruses More Likely To Emerge In East Asia Than North America
Novel strains of influenza A are more likely to emerge in East Asia than in North America, according to a global analysis by the One Health Institute at the UC Davis School of Veterinary Medicine and EcoHealth Alliance.
Wednesday, September 30, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Crunching Numbers to Combat Cancer
UCSF receives $5 million to integrate data from cancer research models.
Wednesday, September 16, 2015
Virus In Cattle Linked To Human Breast Cancer
A new study by UC Berkeley researchers establishes for the first time a link between infection with the bovine leukemia virus and human breast cancer.
Wednesday, September 16, 2015
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Monday, August 03, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Kitchen Utensils Can Spread Bacteria Between Foods
In a recent study researchers found that produce that contained bacteria would contaminate other produce items through the continued use of knives or graters—the bacteria would latch on to the utensils commonly found in consumers' homes and spread to the next item.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Safer, Faster Way To Remove Pollutants From Water
Using nanoparticles filled with enzymes proves more effective than current methods.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Novel Tumor Treatment
In the first published results from a $386,000 National Cancer Institute grant awarded earlier this year, a paper by Scott Verbridge and Rafael Davalos has been published.
Speeding Up the Process of Making Vaccines
System uses a freeze-dry concept to develop "just-add-water" solution.
Chemical Design Made Easier
Rice University scientists prepare elusive organocatalysts for drug and fine chemical synthesis.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos